[모든 참인 명제는 부정해도 무모순임 증명]
증명이란
공리에서 결론을 도출하는것
공리가 참이면 결론이 참
대우
결론이 거짓이면 공리가 거짓
공리는 참이라는 증명이 없음
따라서 귀류법 증명이 없음
따라서 공리를 부정하면 무모순
이말은 공리가 거짓이면 무모순
결론이 거짓이면 공리가 거짓
공리가 거짓이면 무모순
따라서
결론을 부정하면 무모순
1. 공리를 부정하면 무모순
2. 결론을 부정하면 무모순
모든 참인 명제는 공리거나 결론이다
따라서
모든 참인 명제는 부정하면 무모순
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오리비콘은 귀여운데 너무하네
-
키미노 운메이노 4
히토와 보쿠쟈나이
-
세상이 말세구나....
-
일요일 공부 0
N수생들 일요일엔 공부 얼마나 함? 난 그냥 국어 수학 탐구 하나 정도만 하는데
-
중국 매체, '尹 구속' 긴급타전…"한중, 더 가까워질지도" 4
[앵커] 중국 매체들도 윤석열 대통령에 대한 구속영장 발부와 윤 대통령 지지자들의...
-
수학영역 틀딱 기출 활용문제 굳이 풀어야 하나요,,, 요즘은 활용 거의 안나오지...
-
오늘 왤케 잘생기고 예쁜 사람들이 많냐... 30분만 깔짝하고 집 가야겠다...
-
동국대 중도에서 저거 가지고 공부하게 ㅇㅇ 오르비 필통 어디서 삼?
-
제 남자친구가 작성한거에요ㅠㅜ 저는 오르비 들어와서 공부관련 질문들만 올렸었는데...
-
대구한 처음 들었을때 13
대구대학교 한의학과인줄 알았음 근데 학교 이름이 그냥 대구한의대더라
-
으흐흐 4
(음흉)
-
[동앵과 뉴스터디]“北 지령대로 기밀 수집” 민노총 간첩단 1심 중형 1
윤석열 대통령이 계엄 이후 담화에서 이런 말을 한 적이 있습니다. “거대 야당은...
-
나랑 별 보러 가지 않을래
-
같은 글 자꾸 올려서 죄송합니다 ㅠㅠ 너무 고민돼서,, 금융권 취직을 노릴 예정인데...
-
음란 오르비콘들 6
-
대성 첨 들어가봐서 모르겠어요
-
친친이 쥬지잖아...그런 기초일본어로 날 꼬시려는 음탕빗치들이 너무 많은것같음
-
? ? ? 왜 oriental medical 이 아닌거지
-
…
-
여러분은 둘 다 붙으면 어디 가실?
-
증명이란 공리에서 결론을 도출하는것 공리가 참이면 결론이 참 대우 결론이 거짓이면...
-
물론 현실에서는 본적없음
-
[속보] 尹 측 "대통령 석방 이유 차고 넘쳐… 증거인멸 염려 없어" 1
윤석열 대통령의 구속영장이 발부된 19일 윤 대통령 측은 "법치가 죽고, 법 양심이...
-
이걸내가증명하겟음 근데 안바꿔도못알아보긴함
-
[속보] 尹 옥중 입장문 “평화적 방법으로 의사 표현 해달라” 4
변호인단 발표 윤석열 대통령은 19일 변호인단을 통해 “국민들이 평화적인 방법으로...
-
틱톡이 ㅁ밝힌 서비스 중단 안내 문구 (사진=틱톡)[이데일리 정다슬 기자] 중국의...
-
안녕하세요 저는 고2수학모고 백분위 95~97정도 나오고 고3 14,21번...
-
이걸 학교에 들고다니는애가 있네ㅉㅈ안쪽팔린가?ㅋㅋㅋ
-
다 예비번호 떠서 2월 말까지 기다리게 생겼네... 이럴줄 알았으면 안정 하나...
-
세~노~!
-
의료법 제2조(의료인) ①이 법에서 “의료인”이란 보건복지부장관의 면허를 받은...
-
그냥 라면 끓여먹을까 흐움
-
국어의 호흡 0
국어 독학서 좋아하는데 국어의 호흡 괜찮나요?
-
생방송 뉴스입니다
-
고려대 국제학부랑 한양대 인터칼리지(냥인칼 가면 융전갈 생각) 둘 다 되면 어디...
-
내 은테만들기가 센츄뱃보다 빨리 되도록!!! 맞팔부탁드립니당
-
메가 대성 통틀어서
-
저희 학교가 내신따기 빡센 곳이라 정시 준비하려고 하는데 고2때는 무슨 문제집들을...
-
오늘 술 ㄱ? 3
칭구들이 술 마시자는데 갈까,,, 어차피 오늘 6시까지 공부할건데
-
뭐가 나을까요? 문과는 서성한이라는 말이 있던데 맞나요?
-
새해 목표는 서울대 가기. 설옥설옥 5문제만 더 맞았다면 올해 갈 수 있었을텐데
-
왜 항상 0
에이 설마는 이루어지고 설마..?는 안 이루어질까
-
행복하세요!
-
문언독인데 푸는순서바꿔볼까요? 고일때부터 쭉 고집했음 문30 언20 독30쓰는데...
-
오랫동안 씻지 않아야 성적이 오른다는 말을 해야 될까..?
-
내 레전드 사회성으로 긱사생활 버틸 자신 없음.. 1인실 왜 없냐고
-
집에 계실텐데
-
더는 못기다리겠다 제발 좀
-
.
제가 수학 전공자는 아니라 정확히는 모르겠는데, 참인 명제는 해당 공리들로부터 도출되기 때문에 공리를 부정해도 무모순이라는 것이 곧 참인 명제를 부정해도 무모순이라는 결론으로 이어진다는 건가요?
참인명제가 결론인 경우 결론이 거짓이면 공리가 거짓이고 공리가 거짓이면 무모순. 따라서 참인명제(결론)을 부정해도 무모순.
공리는 참이라는 증명이 없음
따라서 귀류법 증명이 없음
따라서 공리를 부정하면 무모순
참인명제는 공리거나 결론이기 때문에
참인명제를 부정하면 무모순
그렇다면 쿠쿠리님의 증명 또한 어떠한 공리계 상에서 이루어졌기 때문에 부정해도 무모순 아닌가요?
맞습니다
그렇다면 이 증명에 어떠한 의미가 있나요?
어허 감히 쿠쿠리님에게 이의를 제기하다니 불경한것!
모든 참인 명제를 부정해도 무모순이죠..
1+1=2를 부정해도 무모순이죠
감히 이의를 제기해서 죄송합니다 제가 죽을죄를
ㅋㅋㅋㅋㅋ