-수II, [미소변화율을 논함 3] • 적용 편
*좋아요와 팔로우는 필자에게 큰 동기부여가 됩니다 :D
바로 문제부터 보시겠습니다, 다음 두 문항을 보고 떠오르는 풀이의 방향성을 정해봅시다!
*다 해결하셔도 좋고, 풀이 방향성만 마음속으로 정하셔도 충분합니다!
1번 문제
-東京工業大学(도쿄공업대학) 본고사 중 발췌
14. a>0, t>0에 대해 정적분 S(a,t)를 생각합니다.
(1) a를 고정했을 때, t에대한 함수 S(a,t)의 최솟값 m(a)를 구하시오. [4점]
(2) 다음 극한을 계산하시오. [2점]
2번 문제
-18.03.30 수학 가형
30. g(x)의 극댓값과 극솟값의 차이를 구하시오. [4점]
다 정하셨나요?
제가 두 문제를 처음에 보고 든 생각을 그대로 적자면
"함수가 간단하네요? 피적분함수는 그릴 수 있다면 그려보는 편이 좋겠어요. ->
1번 문제는 조건에 따라 a를 상수 취급하고 t가 움직임에 따라 관찰해보고,
2번 문제는 x와 y=f(x)를 움직이며 관찰하면 되겠군요!
두 문제의 공식 해설은 다음과 같습니다.
(ハイレベル 数学iii•C 중 발췌)
역시 계산은 조금 많지만, 흠잡을 곳 없는 자명한 풀이입니다.
그치만 저희에게는 이전에 학습한 미소변화율 개념이 있고, 이를 이용한다면 단축할 수 있겠다는 생각이 드네요.
*못 보신 분들을 위한 이전 화 링크입니다.
-수II, [미소변화율을 논함] : https://orbi.kr/00066494675
-수II, [미소변화율을 논함 2] : https://orbi.kr/00066523574
두 문제 모두 절댓값이 끼어 있는 정적분으로 정의된 함수이기에, 구간을 나누어 넓이함수를 구하고 미분하는게 출제의도일 테지만,
적분 값을 넓이로 시각화하여 관찰하면 넓이함수의 증감을 바로 알 수 있어요.
2번 문제가 1번 문제의 업그레이드 버젼이기에, 2번문제를 분석하고 1번문제의 해설은 아래 Solution에 추가했어요
|f(t)-f(x)|를 구간 [0,x] 에서 적분한 함수가 g(x)이니
조금씩 x를 키워가며 넓이함수를 관찰하겠습니다.
이 행동의 핵심은 다음과 같습니다.
[0<x<1]일 때 x가 커짐에 따라 y=f(x) 기준선은 위로 올라가며, 넓이의 왼쪽 부분 A는 빨간 형광펜만큼 계속 증가함을 알 수 있습니다.
즉 g(x)는 [0<x<1]에서 증가합니다.
X=1을 넘어서는 순간 기준선 y=f(x)의 운동방향이 아래로 바뀌고, x가 진짜 엄청 미세하게 커짐에 따라 A부분의 넓이는 파란 형광펜만큼 줄고, B 부분의 넓이는 빨간 형관펜만큼 늘어납니다. * 파란 형광펜 부분을 dA, 빨간 형광펜 부분을 dB라 하겠습니다.
기준선이 아래로 이동한다고 할 때, 사진에서 더 움직여도 감소하는 넓이 dA가 증가하는 넓이 dB보다 크기에 총 넓이함수는 (1<x<1+ε) 에서 감소합니다. *(ε는 적당히 작은 양수)
즉 g(x)는 (1<x<1+ε) 에서 감소하며, X=1에서 넓이함수의 증감이 바뀌므로 x=1에서 극대입니다.
이후 언제가 넓이함수의 증감이 다시 바뀌는 지점일까요?
dA>dB일땐 쭉 감소하다가 dA = dB를 거쳐 dA<dB이면 증가하겠군요.
즉 넓이함수의 극소는 dA = dB 일 때겠군요. +(사족)이로 대강의 g(x)의 개형도 그려낼 수 있습니다
(TMI) 실제로 그린 g(x)의 개형 (A의 자취)
dA와 dB는 x좌표 차이가 가로인 미세한 직사각형인데, 세로는 함께 같은 속도로 움직이니 같다고 하면 x좌표차이가 같은 부분이겠군요.
X절편 차가 동일함 + 함수가 x=1 선대칭임을 이용하면 극소가 x=4/3에서 생김을 알 수 있고 적분을 계산하면 답을 얻을 수 있습니다.
Solution) 02번 문제
Solution) 01번 문제
(저는 1번 문제의 함수 표현 S(a,t)가 마음에 들더군요..! 한 변수 고정하는 부분을 언급하지 않았어도 두개 이상의 변수 *특히 기하(평면벡터)등에서 스스로 한 변수를 고정하고 다른 하나를 움직여 보면 좋아요! )
긴 글 읽어주셔서 정말 감사합니다! :D
정성이 들어간 글인 만큼 여러 번 연습하면 꼭 본인의 것으로 만들 수 있을거에요
0 XDK (+28,000)
-
17,000
-
5,000
-
5,000
-
1,000
-
올해 6, 9 ㄱㄴㄷ 유형같은 문제가 없음 물론 나도 그런거 만들 능력은 없음..
-
없어도 되는거겠죠..?
-
고딩때 알던 삼수생 선배 있었는데 그분 피티쌤이 삼수했으면 뭐 서울대 갔겠네요?...
-
시그모 이거 맞아요? 하.. 44모도 아직 2파트 남았고 시그모 5파트 다 못풀어서...
-
컨텐츠 가뭄이라 그나마 적생모가 나은듯..
-
붕어빵 먹고싶다 10
슈크림
-
공부습관이라는건 3
ㄹㅇ어떻게 잡아야 하나요? 중학교때는 고등학교 들어가면 공부해야지~하고 고등학교...
-
일 때문에 성적표 수령을 오늘에서야 했는데... 국어1 수학1 영어1 한국사1 물1...
-
레전드수면패턴 2
3시부터지금까지잠ㅁㅌㅊ
-
하 ㅈ됐다 0
배 존나 아프네...
-
정시 기균 4
기균 농어촌아니고 기초생활인데 화미물지이고요 수능때 32312 맞으면 어디 갈 수...
-
ㅅㅂ 고1 이후로 한국사 공부를 안 했노ㅋㅋㅋㅋㅋ
-
어렵게 나올 수 있는 사상가 노.장자 칸트 니부어 정의론/분배론 교정적정의...
-
그냥 둘 다 죽자로 가는 거임? 양 쪽 다 액셀에서는 발을 뗀 거 같긴 한데 이미...
-
왤케 높음 컷 국어1컷 88 예상했는데 92네
-
물리님 재성해여... 다시는 1일 2실모한다고 나대지 않겠습니다앗...! 으우...
-
자살할까 1
후
-
할 것 같은 불길한 예감이 든다...
-
제대로 ㅈ됐다!
-
헤이유우 4
지금 뭐해
-
1)연논~지금까지 -3일하면 남은기간임 2)북한이 무인기로 시비건날이 14일 =...
-
재수생이고 원래 수학 실모를 풀면 14번까지는 강k가됐든 서바가됐든 어려운 도형문제...
-
적생모 난이도 0
ㅇㄸ?????? 고수분들은 평이하다고 느끼시나요.. 정법 사문 둘 다 시간이 진짜...
-
ㅅㅂ 43 20번 혈압 틀림?
-
츄릅 4
호식이 매간
-
공부 존나 잘하는데 잘생겨서 볼때마다 몸이 큥큥거림;;
-
수학 설맞이 s2 남은 거, 샤인미, 전국 서바 15, 16, 기원모 3개 ,...
-
맛잘알?
-
먼저 시간 재고 풀어본 다음 천천히 분석하고 오답하는게 좋나요? 걍 시간 안 재고...
-
9모 92점 (21,30틀, 28찍맞) 최저러라서 2등급만 뜨면 좋겠는데 미적 실력...
-
방금 병신짓 함 3
스카에서 아메리카노 뽑고 보지도 않고 평소처럼 맨 왼쪽에 있는 시럽을 존나...
-
2024 고3 10모 Crux Table (국어/수학) [N2410] 8
본 글의 작성자는 크럭스(Crux) 컨설팅 입시분석 팀장 환동입니다. 자료를...
-
국수영탐탐실모 +사문 10문제/한지 이마다 하나 듣기/단어암기 끝 설맞이 부시러감 ㅎㅎ
-
일단 9시반까지하공 지구하러가야디
-
킬캠 수준 0
시즌2 1회 72 2회 68 3회 76 찍맞없이 이렇게 나오는데 백분위로 치면 어느정도인가요..?
-
강대x 3,4 정도 난이도 실모 뭐가 있나요?
-
현재 3컷이고 안정3등급 목표고 화작인데 기출 작년 69수능 올해 69보고...
-
ㅅㅂ 42점 ㅅㅂ ㅅㅂㅅㅂ 지구 ㅈㄴ 파야겠네
-
아직 적응하지 않은 상황에 대한 상상의 자유와 현실적 맥락의 부재가 어떤 일이...
-
비틱질 같은게 아니라 진짜로 걱정되서 묻는건데 이명학 실모 이제 막 풀기 시작해서...
-
21-19 기출 푸는거 의미있을까요..
-
이런
-
언확쌍사 13211 국탐 컷이고 확통 높3이면 건동홍 되나요?
-
지금은 확통 하고 있고, 올해 수능도 확통 응시할 생각입니다. 수학 제외하고는 다...
-
어떤 회차가 좋을까요? 딱 4개만 추천해주세욤
-
오늘도 역시 수고하셨습니다. >국어 [본바탕 화작 18회] : 융합에서 (가)를...
-
나중에 꼭 키워야지
-
점수 등락폭이 너무커요 47 ~ 37까지 비유전 빠르게 처내면 47에서 44왔다갔다...
드디어 적용탄이 나왔군요 가장 기대하고있었습니다 진짜 이칼럼은 제 수학의 시각을 넓혀줬으니 잘보겠습니다
저야말로 영광이네요! 궁금하신 점 있으시면 편하게 물어봐주세요 :)
선댓후감
미소변화율 항상 재밌게 보고 있습니다
감사드려요 선생님 :)
이거보고 주머니에서 공이나 뽑기로했다
왜 평면으로 수선을 안내리고 그런걸
동경일공의 공 아닌가용
역시 수학고수
사설 실모나 엔제에서 많이 써먹었는데 많은 분들이 얻어가셨으면 좋겠네요~^^
Sec(x)
짖짜 뇌를 꺼내서 저한테 이식하고싶어요
대 약 연
약선생님 좋은 글 감사합니당
저야말로 도움이 되었다면 기쁘네요
우와!
대 대 대
한의대 걸어두시나요
약연님 시.반(국가권력엔수생어쩌고)님이 이거좀 물어봐달랍니다
강의는 마지막에 나온다고 전해달라네요
https://youtu.be/9EOzb5wCSN4?si=3B1ZDrTpoDF_flU-
g'(x)를 수식으로 표현할 때, 미소변화량을 세로가 적당히 작은 직사각형으로 근사하였다고 생각하면 가로 × 세로인데, 도함수의 정의가 접선의 기울기이고, 접선의 기울기를 삼각비로 표현하면 아래 그림처럼 델타h/델타x로 표현할 수 있고, 델타S = 길이 × 델타높이 인데 양변을 델타x로 나눠 표현하면
넓이의 미소변화량 = 가로길이 × 도함수가 되는군요!
단! 이 경우는 기준선의 운동방향이 축과 평행하게 고정되어 있어 미세한 직사각형으로 근사, 위와 같이 도함수를 직관적으로 뽑아낼 수 있는것이지, 미소변화율 칼럼 1편의 극좌표에서의 근사에선 사용하기 곤란하군요..
헉 이걸 이제보다니..
미소변화율 3도 잘 보고 갑니다..ㅎㅎ
저야말로 도움이 되었다면 기뻐요
영광이에요
미소변화율에서 도함수값을 구할 때 이렇게 변수가 상수라서 일직선으로 움직이는 경우에는 길이가 넓이변화율 즉 도함수값임을 알겠는데 위 가형30번이나 저번 칼럼 ebs문제처럼 변수가 기울기라던지 직선이 아닐 때에는 길이=변화율(도함수값)이 성립하는지 아니면 어느정도 바례하지만 정확히 일치하진 않는 건지 궁금하네요
지난 칼럼의 경우 아래 이미지처럼 기울기를 조금씩 키우며 미소변화량을 닮음 삼각형(혹은 부채꼴)로 "근사"하였기에, 도함수값을 정확히 추출할 수는 없지만, 증감 변화의 경계가 되는 극값을 찾기는 가능한 것이에요.
다만, 위 사관학교 문항 혹은 이번 칼럼의 문항처럼 미소변화량이 축과 평행/수직한 경우에 한해서 극값조사와 더불어 도함수값을 길이로 추출할 수 있는것입니다.
:)
궁금증이 해결되셨기를 바라며, 혹시 더 궁금하신 점 있으시면 편하게 물어봐주세요