2025年 사관학교 27,28,29,30 Solution
오늘 시행된 25학년도 사관학교 1차시험 수학의 난이도는 꽤 높은 편으로, 변별문항의 난이도 역시 작년 수능에 지지 않는 시험지었습니다.
공통 영역에서 주목할만한 문항들은 11번, 15번, 20번, 21번, 22번으로 특수한 상황에서 일반적인 상황으로의 함수 세팅으로 변화하는 경향을 잘 보여주는 문항들로, 특수할 때를 가정해서 풀이하는 방법보다는 주어진 조건들을 기저적인 상황에서부터 차근차근 따져보는 능력을 요구하고 있습니다.
기하 문항은 공통 영역에 비해 다행히 전형적인 편으로 26번, 27번 같은 지뢰 문항들을 잘 해결하였다면 공통에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
27. #복잡한 계산을 만나면 잠시 차분해지자 #내적의 기하적 의미
도형 안에 내분점 / 외분점이 존재하고 길이비가 주어질 때 경험적으로, 사교좌표계나 t,1-t 내분점 공식을 이용해 만나는 교점 벡터를 표현하고, 이를 주어진 길이나 내적값을 이용해 연산하는 유형이 주로 출제되었었죠.
"아! 나는 뭔가 많이 아는게 있어!" 라고 기저벡터를 세팅.... 하면
좌표로 표현하면 뭔가 쎄한 느낌이 들며 내가 계산을 제대로 한게 맞나..? 하는 의문을 들게 하는 숫자들이 튀어나옵니다.
여기서 계산을 밀고 나가는 순간.. 빡빡한 공통 영역에서의 시간 소모로 인해 28, 29, 30에 치명적인 타격을 주게 되는 지뢰같은 문항입니다. (22.06.27과 비슷한 느낌입니다)
기하러로서 결론부의 AB+AC를 2AM으로 평균벡터를 이용하고 싶은 마음이 들지만 참아야 합니다..! 내적의 연산 성질을 이용해 식을 분리, 내적의 기하적 의미가 사영곱임을 이용하면 너무나 간단하게 해결하실 수 있습니다.
28. #이차곡선의 정의요소 #코사인 법칙1. 이차곡선의 정의요소 이용하기 -> PF'-PF=2a에서 PQ가 날라가니 QF'=2a를 얻습니다.
2. 이차곡선의 정의요소 이용하기 -> Q는 쌍곡선 위의 점이니 QF-QF'=2a에서 QF=4a를 얻습니다.
3. 조건 뜯기 -> (나)에서 둘레의 길이가 20이라 주어졌으니, PF=PQ=10-2a를 얻습니다.
4. 부분/ 전체길이 이용하기 -> PQ+QF'=10이고, 타원의 장축의 길이가 18이니 PF=8=10-2a, a=1을 얻습니다.
5. 결론부 확인 - 코사인 법칙의 이용 -> P의 x좌표가 궁금하니, 삼각형의 아랫변 길이가 궁금합니다 -> 코사인 법칙을 이용해 구하는 값을 얻습니다.
29. #끼인 평면의 작도 #코사인법칙
1. 끼인 평면 작도하기 -> 주어진 도형의 바닥이 직사각형 베이스이기에 수선의 발의 위치가 명확합니다. 수선의 발 X를 내리고 O와
연결하면 끼인 평면 AXO를 작도할 수 있습니다.
2. 공간도형 길이 분석하기 -> 모서리 길이 BO=2, BO'은 BD의 중점이니 BO'=3/2, XO'=BO'-BX로 주변 길이를 이용해 XO'을 구한 후 피타고라스를 통해 OXO'을 분석합니다.
3. 결론부 확인, 코사인 법칙의 당위성 -> 결론부가 BH의 제곱을 묻고 있고, 삼각형 BXH의 두 변과 호환되는 둔각에 대응하는 예각을 알고 있으므로, 코사인 법칙을 이용해 구하는 값을 얻을 수 있습니다.
30. #벡터의 합/차 #벡터의 최대/최소 #23.06.30 변형
1. 주어진 기하 상황 인지하기 / 작도하기
2. 벡터는 평행이동이 자유로움 -> OP+OQ=OX로 표현, OQ를 도형으로 생각하고 OP만큼 평행이동하였다고 생각하며 X의 영역을 구합니다.
3. 최대/최소는 원의 중심을 기준으로 사고하기 -> 주어진 영역 안에서 Xmin, Xmax를 구합니다
4. 명확한 수직의 틀 -> 성분화를 통해 구하는 길이를 얻을 수 있습니다.
무더운 한여름임에도 불구하고 사관학교 시험에 응시하여 최선을 다하신 여러분, 혹은 각자의 위치에서 열심히 공부하고 계신 여러분,
변함없이 여러분을 응원하겠습니다 :D
오늘 하루도 정말 수고하셨어요!
읽어주셔서 정말 감사드려요 :)
0 XDK (+10,000)
-
10,000
-
놀아야되는데 잘시간이 어딨음;;
-
요아정 1
-
죠까치 생겼네 4
인증 좀 하지마
-
누군가 캡쳐했겠지..? 좀 두렵다
-
아 못 봤다 드디어 봤다 물리 잘 하게 생겼다
-
모름
-
진지글) 저격함 3
쪽지로 구라침
-
귀찮..
-
사람이 많아서 두렵다..
-
하나도 못봄 매우 화가남
-
나 ㄹㅇ 건동 가면 13
오르비에 빅맥 세트 10개 뿌림
-
난이도 낮은 리트같은데 이거 맞나요
-
존잘 존예는 2
인증을 더 하도록.
-
퉆 0
둘중 어디?
-
아까 핫식스 많이 먹엇구나... 새르비할수밖에 업서
-
본인한테 그런일이 생기면 매우 슬플듯
-
저는 스스로 메타인지를 잘 하고 있죠
-
2026수능으로 2
서울대 합격 해서 관악에 두리번 하고 싶어요 ㅠㅠ
-
ㄹㅇ... 어차피 내가 최상위권도 아니었고 메디컬을 꿈꿔본 적도 살면서 없긴 한데...
-
제 수능 성적 말하면 다 그렇게 볼줄 몰랐다는데 전 알고 있었음
-
최저 몇 점 정도로 뚫릴까요
-
나도~~~ 세상에 나가고 싶어~~
-
으헤헤
-
ㅇㅈ 14
. . 할줄알았쥐~~ 못잡겠쥐~~
-
서울대 가고싶다 4
ㄹㅇ,,
-
아무도 기억못하나보ㅕ… 잊힐만큼 평범했던거지…
-
다들 뭐하시나요? 11
저는 스킨케어하고 잘 준비를 하는 중이에요!
-
진짜 개쩌는거 1
먹고 바로 누울거임
-
진짜 답답해서 1
'메모장 켜라' 실천 중임 쓰고 지울 것 쓰는 중인데 아 후련하다 진짜 진즉 이렇게라도 할걸
-
잡담태그 있으면 원래 알림 안 가는데 잡담태그'만' 있으면 알림 가나요?
-
사람들이 적절히 못 볼만한 타이밍이 꾸준히 연구해서 칼삭하기
-
거금받고 의사면허없이 불치병 치료하면 불법임? 이걸 의료행위라고 할수있나
-
생1 진짜 유전에서 벽씨게 느끼고 붙잡고 있으면 삼수 넘어서 사수까지 할꺼 같아서...
-
ㅇㅈ글 댓글 해석 14
ㄱㅁ, ㄹㅈㄷㄱㅁ: 평범 무플: 못 쌍욕, 동시다발적으로 많이 달리는 댓글: 존잘
-
가채점 46 0
가채점 숫자 46개 있길래 하나 지우고 매겼는데 갑자기 넘 불안함요ㅠㅠ
-
화1탈출은 지능순
-
ㅇㅈ 8
이분 보고 아시는 사람 최소 4세대 플레이한 사람 태홍 27세
-
사실 너무 부러웟서요
-
남르비언들 몸?인증 15
몇번봤는데 여르비가 하면 좀 그러려나 옷은 당연히 다 걸친상태로
-
뻥임뇨
-
9모 성적 11112 (지구 생명) 10모 성적 12312 (지구 생명) 입니다....
-
문득 궁금해짐 꽤 유서 깊은 전통일 거 같은데
-
남고 다니니까 5
멀쩡한 사진이 중딩 때밖에 없음
-
여자들은 보통 같은여자를 무시하거나 그러진 아늘것같은데. . . ㅠㅠ
-
일단나부터ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
각도의 중요성? 1
존잘 이병건에겐 부질없는 짓임
-
게이력 ㅁㅌㅊ?
-
뀨뀨 13
뀨우
-
음. 다른사람들은 잘생긴사진 잘만찍던데 버근가
23.06.30번 문항입니다!
완젼멋져요
고마워요!! 하이샵님 :)
시험지에 그린 그림만 보면 미적분 뺨 후려치는거같은데 진짜 꿀 맞나요????
미적분/기하 모두 장단점이 명확하다고 생각해요..!
기하는 그림이 복잡한 대신 계산량이 현저히 적은 편이에요 :)
대충 10분걸리는 기하문제 기준
상황파악 + 그림 이쁘게 그리기 9분
계산 1분
형님 멋있습니다!!
캬
비쥬얼은 흉악해보이지만, 낯선 문항이 없기에 기하 기출학습이 잘 되어있다면 + 시간만 충분하시다면 편하게 해결하실 수 있을 문항들이에요..!!
고마워요 :)
기하라니 근본있네요
天才
역시 기하는 약연 ㅋㅋㅋㅋㅋ
진짜 기벡 고수 치사토 찬양하기
기“벡”이 핵심일려나
헉
님
고마워요 질감님 :)
마지막문제 역벡터로 풀어도 예쁘게풀리더라고용
27번 그냥 피타 벅벅했는데