마지막 칼럼들 : 익명으로 올렸던 칼럼
저쪽 갤러리에 올린 칼럼들을 다 내릴까... 고민하다가, 하나는 안 알리고 싶은 스킬이라 내리고, 나머지는 팩트의 정리라 냅두기로 하고 걍 마지막 칼럼으로 올립니다.
1. 미지수가 적어야 좋을까
선 결론 : 가끔 미지수 1개정도 적는게 훨씬 빠르다.
또는, “어떻게 소거될지 알고 있다면” 그냥 미지수를 쓰는게 더 빠르다.
당연히 모든 문제에 대해, 내분, 가중치내분, 기타 비율 이용 미지수 0개 풀이 다 해보고 내린 결론이다.
일단 미지수가 줄어들수록 “순수 풀이 속도”가 감소하는건 동의한다고 가정하자.
물론 특수용례로 작년 수능 20번같이 내분상황이 오히려 복잡한 경우(뒤집어서 해야하고.. 통분도 해야하고..) 미지수 0개보다 1~2개가 계산마저 더 느리긴 한데, 이런 상황은 일단 제외하자. 애초에 이거 내분 왜함
아무튼 미지수가 줄어들수록 순수 풀이속도가 줄어들텐데, 그러면 줄이는게 좋은가?
아니다. 미지수를 줄인다는 것 자체가 “방정식의 소거“를 머릿속에서 미리 하는것이기 때문에 다소 생각시간이 필요하다.
따라서 미지수를 줄일수록 “생각시간”이 늘어난다.
결론적으로 미지수를 줄이면 총 풀이시간이 늘어날수도 줄어들수도 있다는거고, 그 최저점은 사람마다 다르겠으나 내가 학생들 과외하면서 연구한 결과 보통 미지수 1개로 놓고 풀 때가 최저점이다.
미지수 0개 풀이가 보자마자 보이는 사람들이면 논외다. 사실 나도 어지간하면 미지수 없이 푼다. 근데 이런 사람들은 보통 장수생/컨텐츠 제작자/현역의대생 밖에 없다. 그리고 굳이 이렇게까지 빨리 풀 필요도 없고.
+)여담
본인이 듣는 강사가 미지수를 매우 적게 사용하거나 안 쓴다면, 그 풀이를 최종지향점으로 삼는건 괜찮으나 막판 산수에까지 미지수를 안 쓰는 경우 못 따라하겠다면 그냥 이해만 하고 넘어가도 된다. 당장 따라할 필요갸ㅏ 없다.
애초에 강사의 강의를 들으면서 생각해야할 마음가짐은 “와 개쩐다 다 따라해야지”가 아니라 “얻어갈거 있나 함 보자”가 더 옳다.
2. 미지수 잡는게 더 빠른 문제의 예시들
처음에 b=a정도 구하는건 미지수를 잡았다고 하기도 애매하니 패스.
미지수를 하나도 안 쓰고 푸는게 가능하다. 즉 x에대한 식을 구할필요 없이 단순 비례식으로 풀 수 있음. 힌트는 (나)를 H2B + NaOH용액을 기준으로 묽힌 용액이라고 생각하면 된다.
근데 이 생각이 빠를까 x잡고 산수때리는게 빠를까?
반응전 A와 B의 몰수를 계수 a로 표현, 반응 후 C 몰수를 계수 c로 표현하면서 상댓값 잡고 풀면 더 직관적이고 빠르다. 즉 미지수 2개를 쓴다.
추가적으로 실험 1에 곱하기 2 하면 존나쉽다.
물론 반응전 A와 B 몰수를 x, y 이따구로 잡으면 풀이 터진다.
가중치 내분으로는 미지수 0개
선형성으로 미지수 1개
일반풀이로 미지수 2개
가중치 내분 말고는 풀이속도의 차이가 없다.
선형성과 일반풀이, 솔직히 속도 차이 안난다.
가중치 내분은 이 문제 나오기 전엔 없던 스킬이니깐 엄밀히는 뒷북풀이라 논외이다.
3. 이온표 논쟁 정리하면
비 첨가형 유형에선 이온표가 “일반적인 실력인 경우” 더 빠름
이온표 안 쓰는 풀이에 매우 숙달되면 비 첨가형 유형에서도 이온표보다 빠름
첨가형 유형에선 이온표가 대부분의 경우 느림. 문제 상황에 따라 시간차이가 클수도, 작을수도 있고 이온표 그리는 실력에 따라도 갈림
이온표 자체의 근본적 한계는, 대부분의 경우 문제풀이에 쓸모없는 알짜 이온 개수까지 다 적는거때문에 시간이 끌리는거인데
비 첨가형 유형은 해봤자 용액 3개주는거라 큰 문제가 안되고, 오히려 능지 굴리다가 시간 끌림
첨가형은 용액 4개나 그 이상도 주고, 첨가형 문항의 기본 베이스인 선형성이 잘 보이지 않게 되는 이온표가 손해인거
이온표가 확실히 불리한 평가원 문제는 아래가 있다
나머지 평가원 문제는 대부분 큰 유불리가 없다
물론 애초에 이거 이온표로 해설하는 사람 없을정도로 너무 명백한 예시인데..
2206 중화도 연속성이 명백해서 이온표가 불리한 사례중 하나다.
4. 21학년도 7월 학평 20번(중화)
사실 ㄱ, ㄴ 귀류법 때려도 쉽게 풀리지만 생각을 하면서 해보자
+) 그래프에 보이는 첨점으로 푸는 풀이는 패스한다.
++) 과조건 존나많다.
1. 용액 1은 염기, 용액 2는 산성이다. 1~2 사이에서 넣고 있는 산의 음이온 개수는 증가해야 하고, 넣지 않고 있는 산의 음이온 개수는 일정해야한다. 따라서 용액 2를 2:2로 두면 상댓값이 일치한다. 이걸 걍 개수로 두자.
2. 용액 1과 용액 2의 음이온 수 합이 4로 같다. 하지만, 현재 첨가하는 상황이고, 용액 1~2 사이에서 액성이 바뀌었으므로 “전하량 합”은 증가해야 한다. 따라서, 평균 전하량이 증가했다. 즉, 넣고 있던 산은 2가이다. 따라서 ㄱ은 HA, ㄴ은 H2B이다.
(따라서, 용액 1 1:1:2에서, 비율 2에 해당하는게 A-이다. 실제 시험장이라면 이제 문제에 이온을 표기해야한다)
3. 용액 1의 전하량 합은 5, 용액 2의 전하량 합은 6이다. 양이온은 1가 이온 뿐이므로 전하량은 양이온 개수와 같다.
따라서 용액 1의 모든 이온 개수는 9, 용액 2는 10이다.
이온 수 비 9:10인데 몰농도 비 9:8이므로 부피비는 4:5이다.
따라서 V=20이다. (ㄱ X)
4. 5mL 첨가 지점의 모든 이온 개수는 10이다.
설명 : 단순 첨가 상황이므로, 용액 1과 양/음이온 전하량은 같다(둘 다 중화점 이전이므로). 근데 5mL지점이면 아직 2가가 들어오지 않은 상황이다. 따라서 전체 이온 개수는 전하량이 5이므로, 5*2 = 10이다.
5. 용액 2도 이온 개수가 10이므로 용액 2와 비교하면 기분 좋을 것 같다.
5mL 첨가 지점 부피는 25, 용액2 부피는 50이고 이온 개수가 같으므로 몰 농도 합 비는 2:1이다. 따라서 m=16 (ㄷ O)
6. 부피 비 HA:H2B = 1:2로 넣은게 용액 2인데 A-, B2- 개수가 같다. 따라서 몰 농도비는 부피비의 반대인 2:1. x:y=2:1(ㄴ O)
답 4(ㄴ, ㄷ)
설명을 많이 했는데, 님들이랑 나랑 약속이 안 되어있어서 그럼. 님들이랑 나랑 용어적으로 약속을 했으면 풀이는 짧음
5. 제일 빠른 231120 초반부 풀이 및 잡기술
대충 개념은 “공통항의 소거”라고 생각해두던 택틱이고
원래 양적관계에서 반응 후 생성물 몰분율 같을때 쓰던 논리인데
여기서 응용해서 부분적으로 잘 적용됨
3:6
6:2
로 맞추면 부피가 같음
이제 두 비례식 빼면, 비례식 왼쪽항은 3, 오른쪽 항은 4인데 이게 각각 부피가 같아. 따라서 이게 그대로 분자량비. 끝.
이유 설명하면
(가) 3:6
(나) 6:2에서
비례식 왼쪽항 최솟값 3, 비례식 오른쪽항 최솟값 2를 뽑아
즉 3:2를 생각해
이건 실린더 (가)이든 (나)이든 부피가 같을거야
(가)와 (나)에서 각각 3:2를 빼주면, (가) 0:4, (나) 3:0이야
근데 (가)와 (나)는 원래 부피가 같았고, 같은걸 빼줬으니 부피가 같아
따라서 부피가 같은데 그 질량비가 3:4이니 이게 분자량비.
이게 기본 원리고, 결국 결론은 “공통항”을 빼도 같다는건데, 이게 사실은 서로 빼주는거랑 동일한 행위라서 맨 처음 보여준 풀이가 나와.
나는 이거 양적관계에선 “닮은 반응”이라고 부르는데 언젠가 올려볼게. 공통항 소거중 한 부류.
+)사실 윗 설명은 양적관계에서 쓰는 택틱을 양론으로 옮긴 형태의 설명이고
일반적으로 내가 양론에서 많이 쓰는 풀이는 아래임. 아래에서 말할 일종의 꼼수?를 알아두면 좋아. 분자 이름이 너무 기니깐 왼쪽놈 A, 오른쪽 B라 하면,
(가) = A 3g + B 6g
(나) = A 6g + B 2g
으로 그냥 써. 상황이 그러니까.
(가)와 (나)의 부피가 같으니, 부피로 식을 세울거고, 이제 식에다가 이런 의미를 부여해.
A 3g + B 6g -> A 3g의 부피 + B 6g의 부피 (이지만 굳이 표기를 하진 않고 머리속으로 생각)
그대로 식을 전개해
A 3g + B 6g = A 6g + B 2g
A 3g = B 4g
아까 의미부여한걸 생각하면, A 3g 부피 = B 4g 부피.
따라서 분자량비 3:4가 나와.
이거 많이 쓸 수 있을거야.
++) 이 문항 역수이중내분의 경우, 솔직히 “좋은” 풀이는 아니라고 생각함. “평범한” 풀이 정도에 들어가는듯. 내분을 잘하고, 빨리 한다면 이 문제 정석풀이랑 속도가 비슷할수가 있을 것 같음. 이유를 좀 말해보자면...
일단 이 문제만 놓고보면 역수내분은 내가 한 풀이보다도 느리고, 질량을 똑같이 잡고 연립하는 풀이보다도 느림.
저런 형태로 역수내분이 가능한데 숫자가 내분하기 매우 편하고, 되려 부피를 똑같이 맞춰서 풀기 어려웠다면 역수내분이 더 좋을수도 있으니, 단일 케이스만 놓고 주장하지 말라고 할 수도 있음.
근데 역수이중내분이 다른 풀이보다 더 우위라면 일반 대수풀이로는 식이 씹창이나는 상황이라 평가원은 절대 못냄... 평가원은 문제를 출제할때 내분으로 풀라고 상정하고 내는게 아님. 일반 풀이도 충분히 고려함.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
리트 공부를 어떻게 해야 할지 묻는 학생들이 많아, 이에 대해 정리한 칼럼을...
-
헬스인 특: 1
펌핑됐을 때 몸이 내 몸이었으면 좋겠음 ㅋㅋ
-
반수 방법 고민 3
현역 언확쌍윤 13212 나왔고 서연고 상경 목표로 반수하려고 하는데 1학기에는...
-
앙의~
-
기가차드 3
요즘 이게 유행이래요...
-
내신관리 어케하는거죠 중학교 때 내신으로 피말리는 일기토 뜨다가 이 짓거리를 대학...
-
한양대에 존재하는 모든과(메디컬제외)중 가장 멋있는, 가장 간지나는,가장 낭만있는...
-
가갑자기 14
퍙생 연애를 못할 것 같음....
-
한양대 0
보통 조발 언제쯤하나요?
-
걍 그당시 젤 어린태그여서 달았다가 미자가 어캐 뱃지달았냐 소리도 들었는데 이젠 05가 21라니..
-
먼가잘하고싶은욕구가
-
생1이랑 지1 외워야하는 내용 = 암기량이 뭐가 더 많은지 일반적으로 백분위 98,...
-
그 사람이 피카츄와 한팀이 되어 싸우고 전기 마법을 자유자재로 다루는 장면이...
-
한양에게 고함 0
서성한중을 노리는 중앙대에 맞서기 위해선 내일 발표하는 중앙대에 조기발표로 맞불을...
-
강의 실력이나 교재나
-
편의점 알바 오전 8-10시에 면접방문 가능하냐는거 테스트임? 3
몇시까지도 아니고 오전 8-10시에 라는건 심리테스트임? 8시까지 가야는거야 뭐야
-
월 300 현금흐름 만들고나면 학교 자퇴하고 집에서 술 오르비 담배 게임만할텐데...
-
물1 고2)배기범 필수본,1순환,기범비급vol1,마더텅,기출의...
-
쌍사 7
쌍사를 하지 말라고들 하는 이유가 뭘까요?
-
현직 개원의 입장에선 갈등 지속될수록 개꿀빨기때문 ㅋㅋ 의대생들 졸업 하지마라~...
-
안돼 안그래도 하루가 10년같은데 한 200년 더버텨야한단 말이잔ㄹ아....
-
이거 왜 이러냐
-
난시인 분 있음...? 15
이거 불치임? ㅠㅠ 안과 가보려고 하는데..
-
1. 무언가를 공부하기로 결정한다 ex)수능, 토익, 자격증, 전공 등 2. 신나게 감상한다
-
높공이 유지될지 아닐지 아무도 모름 컴공 화공이 이렇게까지 망할 거라고 5~10년...
-
편의점알바 면접 결과 문자로 알려준다는거 떨어진거임? 2
저녁에 알려준다면서 답장이 없어 시벨 점장
-
ㄹㅇ... 사실 서울 외곽도 좋지만 서울 중심지에 자가를 갖고 싶음 아직 20대인데...
-
줄임말이 진짜 편하긴함 근데 장성군,강진군,장흥군,담양은 진짜 처음들어본다 곡성은 영화때문에 알고
-
왜 굉장히 오래전 일같지... 마치 23 24입시 때의 일인 것 같음
-
저 지금 라면 먹을건데 라면 끓는 도중에 참치 넣어요? 아니면 마지막에?
-
지금 91명 중에 32등인데 작년 114명 점공, 50등까지 최초합이고 재작년...
-
일단 피부는 관리 성공했습니다 여드름 없음
-
김상훈T 문개메 0
06 재수생이고 김상훈T 처음 들어봅니다 작수 강민철T 문학 듣고 0틀이고 새로운...
-
특히 올해는 교차해도 라인 안높아지는 사람 한트럭에 심지어 사과탐가산 때문에...
-
생2선택 vs 지1선택 14
둘다 노베이고 올해 탐구 공부할 시간은 꽤 있긴 해요 현재 생2표본이 그나마 괜찮은...
-
다들 아시다시피 이번에 연대가 논술 뻘짓 크게 해서 입학처에서 크게 부담을 느꼈다고...
-
어제 술 처먹고취해서 술먹고양치안하면 죽는다고 하고다녀서 3
엄빠지금 그걸로하루종일놀림
-
연대조발좀 2
송도 원룸은 비싼가요
-
어차피 팡일이 강의 좀 듣다가 심심하면 담요덮고 지영쌤 강의 구경하다가 승제찡이랑...
-
처음앤 혼잣말 처럼 썼는데요,맞는지 궁금해서 의견 달아주심 좋을거같아요 ㅎ
-
대거 유입된다고 한의대 경쟁률이 오르진않겠죠? 일단 치대 정원도 줄고 힘든데 아이고....
-
롤체 깨달았다. 8
마스터 175점. 나는 더이상 마빵단이 아니다.
-
뭔 한양대 컴소가 설인문이랑 겹쳐 시발ㅋㅋㅋㅋㅋㅋㅈ버러지같네 높공부심 알겠는데 말이 되는소릴해야지
-
몇십만에 가까운 한 집단의 이해관계자들이 이를 악물고 눈이 충혈되어 우르르 달려들면...
-
확실히 오른쪽이 낫긴 하네
-
연대 가면 할거 7
1. 학점 4점대 따기 2. 전과는 힘드니까 이중전공이나 부전공하기 3. 과외로...
-
표점 올해랑 같다는 전제하에 국어 백분위 98 수학 원점수 88 백분위(97정도?)...
-
좀 선넘긴햇던데
-
오랜만에 애니 보기로 했어요 ㅎㅎㅎ 대신 이상한 눈으로 쳐다보지는 말아주세용...
Dead God.
수고하셨습니다!
내신 때문에 아직 1단원까지밖에 안했는데… 밀도가 9:8이니까 총질량을 처음부터 9:8로 맞춰서 공통항 빼고 바로 분자량 구하는 게 엄청 신박하네요
저는 (질량비 합)/(질량비/분자량 합)을 밀도비로 해서 풀었는데 이 과정 계산 속에서도 같은 논리가 나오네요 이 계산 줄이는 게 화학에선 정말 중요한 것 같아요 <—혹시 이게 정석풀이인가요?
역수 내분은 김준쌤 거 찾아서 봤는데 오히려 복잡해서 유명하다던 역수내분이 저한테 안 맞나.. 했는데 이게 유용할 때가 있고 아닐 때가 있군요
아직 4단원 안해서 모르겠지만… 문제풀이 할 때면 쓰신 글 다 봐야겠네요 정말 유용할듯
그게 정석 맞아요