[기출 에센스] 정적분의 넓이 관점
[기출 에센스] 정적분의 넓이 관점.pdf
[기출 에센스] 정적분의 넓이 관점 손필기.pdf
한줄 요약하자면
"대칭성이 있는 함수가 나왔을 때나 정적분 관련해서 부등식이 나왔을 때 유용한 경우가 많습니다."
20190921(나)
기본적으로 x축 위쪽에 있을 때는 (정적분)=(넓이)>0이고 아래쪽에 있을 때는 (정적분)=-(넓이)<0 입니다.
20201128(나)
그리고 위로 볼록한 함수는 [a, b]에서 정적분 값이 같은 구간에서 만든 사다리꼴 넓이(음수인 경우도 포함)보다 큽니다. 아래로 볼록한 경우는 반대가 되구요. 이를 이용해서 부등식을 증명할 수 있겠죠.
2022예시문항12
어떤 구간에서 f(x)>0이면 그 구간에서 정적분 ∫f(x)dx의 값도 0보다 큽니다. 이를 이용하면 f(x)>g(x)인 구간에서 정적분의 대소관계도 유지되어 ∫f(x)dx>∫g(x)dx임을 알 수 있고 [a, b]에서 m<f(x)<M이면 정적분 ∫f(x)dx의 값이 m(b-a)<∫f(x)dx<M(b-a)임을 알 수 있습니다. ㄱㄴㄷ에서 정적분 관련 부등식을 물으면 이 내용을 한 번 떠올려주세요.
20210918(가)
f(a-x)=f(a+x) 또는 f(x)=f(2a-x)를 만족하면 x=a에 대해 대칭입니다. y=f(x)f(1-x)는 보자마자 x=1/2에 대칭임을 눈치챌 수 있어야 하고, 대칭성이 있는 함수의 정적분은 넓이로 꼭 생각해보세요. ㄷ에서는 위 문제에서 말한 것 처럼 f(x)<M일 때 정적분 부등식 성질이 이용되었습니다.
20220914
삼차함수는 점대칭이란 것 알고 계셔야하고, 점대칭인 함수의 정적분도 넓이로 생각할 수 있어야 합니다. 합동인 부분 옮겨서 직사각형 넓이로 해석이 가능하죠. f(a-x)+f(a+x)=2b 또는 f(x)+f(2a-x)=2b이면 (a,b) 대칭입니다. 추가로 y=f(x-a)+b 그래프를 그리는 방법 익혀두세요.
20211120
첫번째 정적분 조건은 그리 어렵지 않게 해석이 가능합니다. 두번째 정적분 조건을 이용하는 게 어려워요. 하지만 y=xf(nx)가 y축에 대칭이라는 것을 알면 그래프 그래서 넓이로 해석해볼 생각을 해야합니다. 그러면 꽤 간단히 정적분 처리가 가능합니다.
도움되셨신다면 좋아요, 댓글, 팔로우(구독) 해주시면 큰 힘이 됩니다.
좋은 학습자료에 좋아요가 많을수록 글 쓰시는 분들도 양질의 컨텐츠를 뽑을 수 있습니다!
추가로 다루어주었으면 좋겠다 싶은 소재가 있으시면 말씀해주세요.
[지난 글]
고3 10월 수학 전문항 손풀이 + 복습 포인트 정리 자료
나라면 꼭 복습할 EBS 연계 수학 선별 문제(공통/선택 전과목)
수능완성 수학 실전편 5회 모의고사 전문항 풀이 + 복습포인트
수능완성 수학 실전편 4회 모의고사 전문항 풀이 + 복습포인트
수능완성 수학 실전편 3회 모의고사 전문항 풀이 + 복습포인트
수능완성 수학 실전편 2회 모의고사 전문항 풀이 + 복습포인트
수능완성 수학 실전편 1회 모의고사 전문항 풀이 + 복습포인트
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
윤도영으로 늦게 갈아타서 이노베이션이랑 기출 빠르면 9월 중순에 끝날것 같아서...
선생님 정말 감사드립니다!!!!
댓글 남겨주셔서 감사합니다 도움되시길 바라요
적분조아
기출 정리하는데 도움 많이됩니다 감사드려요.
올해 만들어주신 자료는 거의 다 풀어본거 같네욥
엄청 뿌듯하네요 ㅎㅎ 자료들이 도움되시길, 올해 좋은 결과 있으시길 바라요
감사합니다!!!
댓글 남겨주셔서 감사합니다
한줄 요약 보고 다시 문제 풀어보니깐 새롭게 보이는 것들이 많았습니다 정말 감사합니다
댓글 감사합니다 도움되시길 바라요