[기출 에센스] 고난도 등차수열 공략법
[기출 에센스] 등차수열.pdf
[기출 에센스] 등차수열 손필기.pdf
자주 사용되는 사고과정을 정리해보았습니다.
1. 기본적으로 수식적인 접근을 할 수 있습니다.
① 일반항에 대입할 수 있고
② 부분합 공식에 대입할 수 있습니다.
③ 부분합은 상수항이 0이고 최고차항의 계수가 공차의 절반인 이차식입니다.
④ 반대로 부분합이 이차식이라면 일반항은 등차수열이 됩니다. 부분합의 상수항이 0이냐 아니냐에 따라 일반항이 첫째항부터 등차일 수 있고 둘째항부터 등차일 수 있습니다.
2. 수식적인 접근보다 나열하고 관찰하는 풀이를 좀 더 연습해두시기 바랍니다.
① 등차수열의 합은 대칭성이 있어서 a1+an=a2+a_(n-1)=a3+a_(n-2) 이 됩니다.
② 등차수열의 합은 (첫항+마지막 항)×(항의 개수)÷2로 구할 수 있습니다. (공식보다 자주 사용)
③ 항의 넘버링의 차이를 보고 d를 몇배하여 더하거나 빼줍니다. (일반항에 대입하는 것 보다 자주 사용)
3. 중요한 성질로는
① 자연수, 정수 조건이 보이면 무조건 예민하게 반응합니다. 약수 조건을 활용할 수 있습니다.
② 등차수열은 부호가 일정하거나 "단 한 번" 바뀌는데 바뀌는 지점을 파악하는게 핵심일 때가 많습니다. 이를 문제에서 다양한 모습(절댓값, 부분합의 대소비교)으로 숨겨서 주므로 잘 파악해야합니다.
도움되셨신다면 좋아요, 댓글, 팔로우(구독) 해주시면 큰 힘이 됩니다.
좋은 학습자료에 좋아요가 많을수록 글 쓰시는 분들도 양질의 컨텐츠를 뽑을 수 있습니다!
추가로 다루어주었으면 좋겠다 싶은 소재가 있으시면 말씀해주세요.
[지난 글]
나라면 꼭 복습할 EBS 연계 수학 선별 문제(공통/선택 전과목)
수능완성 수학 실전편 5회 모의고사 전문항 풀이 + 복습포인트
수능완성 수학 실전편 4회 모의고사 전문항 풀이 + 복습포인트
수능완성 수학 실전편 3회 모의고사 전문항 풀이 + 복습포인트
수능완성 수학 실전편 2회 모의고사 전문항 풀이 + 복습포인트
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하나 사고싶은데... 비싸...
-
얼버기 0
우헤헤
-
아 어제 할껄 0
비 오고난 후 추워질텐데 역시 할 일은 바로바로 해야 해
-
사실 출근안했고 아침먹는중임 가기싫다
-
이거 좀 답해줘 3
9시 수업있는데 원래 2시 수업도 있는데 싸강됨.. 귀찮은데 걍 모자쓰고 갈까??...
-
아학교가기싫어 6
비는 또 왜 오는건데ㅠㅠ 지금 결석할지말지 고민즁잉대ㅜㅜㅜ
-
헤헤
-
7시가 되어가기 때문이지
-
뻘소린데 0
요즘 물가에 질식할 것 같음 걍 날 죽여라
-
밤 왜 샜지..... 수시러들 암튼 존경함
-
일어나
-
쿠팡 힘들다 1
이걸 연속으로 뛰는 사람은 대단하네 ㄷㄷ
-
근데 그 시절이 너무 그리워 꼴에 첫 대학생활이라고 마음이 조금 부푼 것도 있었고...
-
결국 5수를 하나. 사탐런 진지하게 고민해봐야되나
-
트리플에스 끝!
-
동덕여대보다 더 처참함
-
죄는 없는데 죄책감생김
-
https://naver.me/5YFRHw2t 어디든 민주 한숟갈 올리는게 요즘 여대에서 유행인가봄
-
속보 0
우옹애
-
기상 완료 예비군 2일차 갔다오겟음 아...
-
일단 지방의대 바이탈과 교수들은 인서울로 많이 옮기거나 그만둠 지방의대 교수들이...
-
생활패턴 망했다 1
오전 7시 취침 오후 4시 기상 이게 뭐야 대체
-
김상훈T 0
독서 독해 방식이 어떻게 되나요? 그읽그풀 느낌이면 좋겟는데..
-
잠이 안와 씨바 3
나 자고 싶다고........ ㅅㅂㅅㅂㅅㅂㅅㅂ 어젯밤도 샜는데 왜 잠이 안오는데ㅜ
-
ㄱㄱ
-
기차지나간당 2
부지런행
-
진짜 잔다.. 2
다들 자요 빨리
-
으으
-
밤샐까.. 0
수면패턴 박살났는디 초기화나 시키게
-
양악하고싶다 0
-
선착순1명 18
가장 빠른 사람이라는 뜻
-
12시 이후부터만 ㅇㅇ.. 자야지이제
-
97점 99 76점 85 93점 1 45점 96 42점 96 언미생지 나는 이과지만 수학이 밉다..
-
에구구
-
18수능 국,수(가형),영,한국사,물2,화2,중국어 응시 각 원점수...
-
ㅇㅈ 10
마스크업으면무서웅
-
언제까지 이런 현타오는 일상을 살아야하지
-
또 불면증의 밤 4
엊그제도 밤을 새고 어젯밤엔 4시간 잤는데 또 잠이 안와???? 낮잠도 안잤는데 나...
-
최대한 안정적인 과목 원하고 둘 중에 하나만 꼭 고르면 머가 좋을까여
-
안녕하세요.. 10
요즘 바빠요
-
안자는 사람 손 9
가능?
-
수시6장 설대만지름 서울대의대 수시교과 합격 서울대 경제학과 학생부교과전형 합격...
-
나랑 정철할래? 1
-
그것은 바로 경제 왜냐면 전교에서 한명만 하거든
-
이분 닮은걸류 종결..
-
오르비
-
진짜 잔다. 4
10시엔 일어나야 해..
-
이게 이론상 가능한게 무서움...
-
이거들어바 18
-
시험장에서 어떤 개지랄을 했길래 이렇게 망쳤을까..
항상 봐주셔서 감사합니다!
약점 찾기 도움 많이 됬어요 감사합니다@@!!
댓글이 큰 힘이 됩니다. 수능 때도 꼭 많은 도움 되시길 바라요!
댓글이 큰 힘이 됩니다. 수능 때도 꼭 좋은 결과 있으시길 바라요!
항상 감사합니다!!! 정말 도움이 많이 됩니다 ㅎㅎ 혹시 가능하다면 정적분함수 혹은 미분 단원에서 볼 만 한 것들 부탁드립니다
의견 주셔서 감사합니다. 제 자료들이 수능 때도 큰 도움되시길 바라요!
항싱 잘 보고있습니다 혹시나 해서 여쭤보는데 적분 토픽은 계획에 있으신가요!?
잘보고 계시다니 힘이되네요. 확답 드릴 순 없디만 올해 9월 14번 유형이 후보로 있습니다.
혹시 계획 중인 소재 뭐 있는지 여쭤봐도 될까요? 영상으로 정리 너무 잘 돼서 잘 보고 있습니다 감사합니다!
영상이 도움되신다니 기쁩니다. 소재 후보들은 이런데 다 다룰 수 있을 지, 갑자기 새로운걸 할지 어찌 될지는 모르겠어요.
절댓값 함수의 미분가능성, 정적분 ㄱㄴㄷ, 삼도극, 합성함수(극대극소, 미분가능성, 실근 개수), 삼차함수 비율 관계 등입니다
믿고보는 제로님 칼럼!! 기출에센스 마지막 정리할 때 넘 도움돼요
도움되신다니 기쁘네요 남은 기간 자료들ㄷㅎ 도움되시길 바라요
목소리 너무 기엽
수능 좋은 결과 있으시길!
하 진짜 ..... 너무 감사합니다 ㅠㅠㅠㅠㅠㅠ
봐주셔서 감사합니다아