대치동어둠의양적관계어드밴스드유리함수점근선궁극의얼티메이트해석법
이번 글은 편하게 반말로 함.
제목을 보면 알 수 있듯이 이 스킬 비슷한 무언가는 쓸 일이 어지간하면 없음.
지금까지 쓴 칼럼들은 어려워도 쓸 일이 꽤 있었는데 이번엔 쓸 일이 없는거 같음
쓸 일도 없는 스킬을 왜 칼럼으로 쓰느냐? 심심한데 기분이 좋아서 그럼
다음부턴 쓸모있는 칼럼을 올리겠음ㅎ;
(추가 : 아니 이거 어쩌다보니 메인왔는데 혹해서 남용하지 마세요 취급위험.. 어지간하면 불리하고 사설문제에 가끔 유리한느낌)
일단 이 방법은 내가 처음 생각한 풀이는 아니고, 모 머리좋은 고2학생이 알려준 풀이임. 걔 좀 천재같음. 아니 천재맞음 ㅇㅇ. 아무튼 이 방법은 상황에 따라 풀이가 매우 단축되지만, 상황에 따라선 풀이가 매우 늘어짐.
혹시 머리가 아주아주아주 비상한 몇몇 학생들은(ex : 이 풀이 알려준 학생) 써먹을 수 있겠지만 일단 나는 못써먹을듯(쓰지 말란말). 시작합시다.
화1에서 유리함수가 어케 쓰이는지 모른다면, 참고용으로 이전 칼럼을 보고 오면 좋을듯
아 근데 사실 아직 유리함수 잘 안쓰면 이 칼럼이 쓸데가 없나?
걍 아직 유리함수 모르면 좋아요만 누르고 가줘ㅁㄴㅇㄹ
이 문제에서 몰수 비를 그래프로 그리면 아래와 같음
근데 알다시피 유리함수는 점근선을 가짐. 지금 넣어준 B의 몰수가 m/a면 점근선인건 아는데, x축 점근선을 모름. 그 높이를 대충 k라고 잡자.
근데 이 k가 뭘 의미하는지 미리 생각해보면, B를 음의개수로 무한히 투입했을 때 생성물/반응물이잖음. 그리고 한계 반응물은 계속 B임
그러면 C의 개수는 음수로 달리고, A의 개수는 양수로 계속 달릴거임. 이때 C/A는 k이고, 2/a가 될 거라는걸 알 수 있음. 이해 안될테니 식으로 써서 보여주면
ㅇㅈ? 계수 비가 될거임.
암튼 나머지 설명은 밑에 그림으로 대체함. 투입한 B의 양이 2일때 분수 값이 4니깐..
즉 점근선의 교점에서 유리함수 점을 찍었을 때, 넓이가 같다는걸 이용해서 식을 세우는게 이 풀이의 핵심임
1) 점근선의 의미를 생각해서 점근선의 값을 구하고
2) 넓이를 통해 식을 세운다.
근데 보다시피 식이 훨씬 더러움. 심지어 투입한 B의 양이 3일때는 유리함수 적용도 못하고, 반응식 깡계산 해야함. 뭐 이런..
그래도 마지막 마무리엔 유용할수도 있음. 이렇게. 참고로 이 문제에서 m=9 a=4
사실 이렇게 보면 이게뭐냐..싶을텐데 사실 아래 두 문제 예시로 더 풀건데 이건 또 매우 잘먹힘.
왜 안좋은 상황만 보여줬느냐? 혹시 혹해서 유리함수 문제마다 이 풀이 쓰려고 할까봐. 눈에 팍 들어오는 직관적인 상황에선 가끔 유리한데, 대부분의 상황에선 불리하니깐 안쓰는게 좋음.
그래도 아주 쓸 일은 없는거 아닌게, 평소에 유리함수를 자주 그려서 푸는 편이고 계산 직관이 뛰어나고 수학을 잘하는 학생이라면 이거 써도 될듯. 근데 그러면 이미 20분컷 만점일텐데.. 뭐 살아남기 모의고사 25분컷 50점을 위해선 유용할수도 있음 ㅁㄹ
암튼 다음 문제를 한번 이걸 응용해서 풀어보자
풀이 1
풀이 2
솔직히 이 경우엔 꽤 쓸모있는 것 같음. 이렇게 넓이를 구하기 편하고 그림이 유리함수로 미리 주어진 상황에선 생각보다 꽤 쓸모있음.
혹시 이 스킬을 쓸 생각이 있는 학생이 있다면, 앞선 문제처럼 유리함수 점근선이 오른쪽에 있으면 쓰지 말고, 이 상황 처럼 유리함수 점근선이 왼쪽에 있는 상황은 꽤 쓸만한것 같으니 이 때 써보면 좋을듯.
마지막 예제
풀이(귀찮으니 부피=몰수로 두고 풀음)
이 문제도 되게 유용함. 마지막 마무리에서 일차함수 기울기를 이용했는데, 투입한 B의몰수/C의몰수를 평행이동 하고 미분하는 느낌. 이거 말고도 다른 사설문제들에 적용 해 봤는데 꽤 풀리는 경우 많음. 유리함수 그래프가 이미 그려져있거나 그리기 쉽고, 왼쪽에 점근선 있으면 해볼만한 것 같음. 더 확장 가능성이 있어보이기도 하고..
핵심은
1)점근선의 의미 상상 및 값 추론(물질의 개수가 음수가 되는것을 허용하고 무한으로 극한을 보내기, 한계반응물은 고정)
2)유리함수 넓이 이용/유리함수 식 이용
이거 두개. 혹시라도 쓸 생각이 있다면 충분히 많은 연습을 하고 쓰는걸 권장하고 이 풀이로만 문제를 풀고 정석풀이를 연습 안한다면 수능 당일날 위험할 수 있으니 정석 풀이도 꼭 연습해보길 바람.
끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인하공전 항공운항과 스튜어디스 지망생 분들이라 키도 크고 외모도 ㄷㄷ
-
얘 내년에 입을 과잠을 내가 선택한다고 생각하니까 소홀히 할 수가 없음 ㅋㅋ
-
68 95 99.7 10
보통 신뢰구간 구할 때는 a=0.05를 쓰죠 점공에서는 예측 구간이라고도 합니다
-
제목 그대로 입니다. 문닫고라도 들어갈 수 있을까요?
-
대학을 더 잘가던데 ㄹㅇ루
-
기차에서 잠안올것같은데 유튜브영상보면 멀미나나여?? 기차별로안타봐서몰라여..
-
벌레 ㅈㄴ 싫음 5
그냥 순간 몸이 굳고 패닉 옴 극복불가능 극복한 사람 있음?
-
이거 꼭 해야해요? 책값 왤케 비쌈 그냥 개념 확인용같은데
-
그냥 국숭세단까지면 ok 너무 학벌을 많이 보고 싶지도 않기도하고....
-
연애하고 싶다 0
ㅏ
-
Z
-
고2 모의고사때 쭉 1이었고 10월때 2등급(구차한 변명이지만 이때 1등급 비율이...
-
지금 노는거 조금씩 줄여서 대학 잘 가고 줄인거 수능 끝나고 순도 100퍼센트로 놀...
-
매직키보드 실까 고민되는데…
-
더러운거 질색이에요;; 편의점 바퀴벌레때문에 관둠 쿠팡은 육체적으로 힘들어서 ..
-
궁금하네요
-
말안된다……
-
작년에 학원끝나고 걸어가고 있는데 길에서 사람보고 하수구에 뛰어드는 쥐봐서 충격먹었음
-
잠은 안 오네요
-
점공 업뎃완료 8
오늘 두명이나 들어왔네용 제발 최초합기원!!!
-
군필 03년생이고 이번에 휴학하고 공부하는데 수학개념을 많이 까먹어서 시발점부터...
-
롤케이크 맛있어 2
-
내일도 안좋으면 병원가야지..., 다들 굿밤되세요ㅜ
-
ㅅㅂ 팔만전자 되는 순간 다 팔아버린다
-
제2외국어 보는반이 분위기 좋다는 말도 있던데요
-
진심 트라우마 ㅜㅜ
-
개념강의가 가장 좋았고 판서좋아인간이라 더 잘 맞았나봐요 풀커리 탔고 수능날 아침에...
-
시ㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣ발 ㅠㅠㅠㅠㅠㅠ
-
근데 성적도 재밌어질거같아서 못하겠음
-
초딩인가 중딩때 인형뽑기 오락실 잠깐 유행하고 그뒤로 싹 사라졌는데 디시 우후죽순생김
-
군대 가면 생각보다 내 학벌이 나쁜 게 아니어서 놀랐네요. 1
지방 국립대 문과 출신이라 속된 말로 하위 10%일 줄 알았는데 군대에서는 이것도...
-
슬슬 합격발표일을 위한 마음의 준비나 해둬야겠군요 설날이 코앞인데 부디 어깨 펴고...
-
어우 기하가 재밌는데
-
고등수학 개념서 2
기본정석이랑 숨마쿰라우데 중에 어떤게 더 낫나요? 완전 노베고 처음 시작하는 거예요
-
잇올 대체공휴일 4
잇올 대체공휴일이나 임시공휴일에 자율등원인가요?
-
이대남들 다 그런거 아나요? 배운다면 어케 배우죠..?
-
이번에 듣보잡 샀는데 step3 뉴테이션 부분은 건너뛰고 1,2만 해도 상관없죠?...
-
국어 대학전공서적공부법으로1등급쟁취 영어 영강공부법으로1등급쟁취 수탐만 판다 ㅇㅇ
-
만화책도 책임? 2
그럼 나도 어릴때 책 많이 읽었지 그리스 로마 신화 칭기즈칸 삼국지 역사 와이책...
-
아니 그럼 n이 이미 붙은거 더 커져도 상관없으니까 대학만 올리면 되는거잖아? 오?
-
엘베 같이 탐 ㅎㅎㅎㅎㅎㅎ
-
연대 조발하라 7
조발하라 조발하라
-
다시 전과 알아보고 하니까 마음이 편해지네 동아리도 하고 축제도 가고 친구도 많이 사귈거임
-
이거 개천절부터 해도됨? ㅜㅠㅠㅠㅠ
-
20으로 알고 있는데
ㅁㅊ
음의 반응이라...
어떻게보면 화2를 끌어온건가
그런 느낌도 있고 화1을 뇌절의뇌절을쳐서 수리적으로 해석한 느낌
사실 이렇게 보는게 맞는듯
흠 좀더 찾아보고 올게요
아니 화1 머치동 강사들도 이런 스킬은 안 쓸듯...ㄷㄷ
wow..
저거 알려주신분 수학 고정100일듯;;
와 이건 진짜 신기하네 ㅋㅋ
생각지도못했다 ㅋㅋ
정신적으로 충격 받음 저게 뭐꼬
이. 이게 머노
누구는 1문제 푸는데 30분 걸리는데...
wow
밑에 예제 둘 다 깡계산으로 풀었는데 이게 능지차인가
당연히 저도 처음볼땐 깡계산..
화1에서 기울기도 땡큐한 건데 유리함수라... 대단하네요
뭔소린지는 모르겠지만 개추
한줄요약 : 그냥 생지해라.
안써도됨....
죄송합니다.. 생지러에게는 너무 어려워요..
물1 사세요...다항함수밖에 안 나오는 물1 사세요....
어림도없지 전기력 실계산문제!!
여러분 쉬운 물2하세요
이해는 못했지만 신기하니 좋아요 박고 갑니다
요즘에는 화학 문제 풀 때 '유리함수' + '점근선'까지 끌어와야 하는건가요?
어후... 타임어택이 예전보다 훨씬 심하겠네요.
아뇨 심심해서 쓴 글이고 이렇게까지 할 필요는 전혀 없어요
사실이런 풀이를 만들만큼 어렵게내는 과탐이 이상한거
오빠 제목이 너무 깐지나요
기출은 씹으면 씹을수록 새로운 맛이 나네요..