대치동어둠의양적관계어드밴스드유리함수점근선궁극의얼티메이트해석법
이번 글은 편하게 반말로 함.
제목을 보면 알 수 있듯이 이 스킬 비슷한 무언가는 쓸 일이 어지간하면 없음.
지금까지 쓴 칼럼들은 어려워도 쓸 일이 꽤 있었는데 이번엔 쓸 일이 없는거 같음
쓸 일도 없는 스킬을 왜 칼럼으로 쓰느냐? 심심한데 기분이 좋아서 그럼
다음부턴 쓸모있는 칼럼을 올리겠음ㅎ;
(추가 : 아니 이거 어쩌다보니 메인왔는데 혹해서 남용하지 마세요 취급위험.. 어지간하면 불리하고 사설문제에 가끔 유리한느낌)
일단 이 방법은 내가 처음 생각한 풀이는 아니고, 모 머리좋은 고2학생이 알려준 풀이임. 걔 좀 천재같음. 아니 천재맞음 ㅇㅇ. 아무튼 이 방법은 상황에 따라 풀이가 매우 단축되지만, 상황에 따라선 풀이가 매우 늘어짐.
혹시 머리가 아주아주아주 비상한 몇몇 학생들은(ex : 이 풀이 알려준 학생) 써먹을 수 있겠지만 일단 나는 못써먹을듯(쓰지 말란말). 시작합시다.
화1에서 유리함수가 어케 쓰이는지 모른다면, 참고용으로 이전 칼럼을 보고 오면 좋을듯
아 근데 사실 아직 유리함수 잘 안쓰면 이 칼럼이 쓸데가 없나?
걍 아직 유리함수 모르면 좋아요만 누르고 가줘ㅁㄴㅇㄹ
이 문제에서 몰수 비를 그래프로 그리면 아래와 같음
근데 알다시피 유리함수는 점근선을 가짐. 지금 넣어준 B의 몰수가 m/a면 점근선인건 아는데, x축 점근선을 모름. 그 높이를 대충 k라고 잡자.
근데 이 k가 뭘 의미하는지 미리 생각해보면, B를 음의개수로 무한히 투입했을 때 생성물/반응물이잖음. 그리고 한계 반응물은 계속 B임
그러면 C의 개수는 음수로 달리고, A의 개수는 양수로 계속 달릴거임. 이때 C/A는 k이고, 2/a가 될 거라는걸 알 수 있음. 이해 안될테니 식으로 써서 보여주면
ㅇㅈ? 계수 비가 될거임.
암튼 나머지 설명은 밑에 그림으로 대체함. 투입한 B의 양이 2일때 분수 값이 4니깐..
즉 점근선의 교점에서 유리함수 점을 찍었을 때, 넓이가 같다는걸 이용해서 식을 세우는게 이 풀이의 핵심임
1) 점근선의 의미를 생각해서 점근선의 값을 구하고
2) 넓이를 통해 식을 세운다.
근데 보다시피 식이 훨씬 더러움. 심지어 투입한 B의 양이 3일때는 유리함수 적용도 못하고, 반응식 깡계산 해야함. 뭐 이런..
그래도 마지막 마무리엔 유용할수도 있음. 이렇게. 참고로 이 문제에서 m=9 a=4
사실 이렇게 보면 이게뭐냐..싶을텐데 사실 아래 두 문제 예시로 더 풀건데 이건 또 매우 잘먹힘.
왜 안좋은 상황만 보여줬느냐? 혹시 혹해서 유리함수 문제마다 이 풀이 쓰려고 할까봐. 눈에 팍 들어오는 직관적인 상황에선 가끔 유리한데, 대부분의 상황에선 불리하니깐 안쓰는게 좋음.
그래도 아주 쓸 일은 없는거 아닌게, 평소에 유리함수를 자주 그려서 푸는 편이고 계산 직관이 뛰어나고 수학을 잘하는 학생이라면 이거 써도 될듯. 근데 그러면 이미 20분컷 만점일텐데.. 뭐 살아남기 모의고사 25분컷 50점을 위해선 유용할수도 있음 ㅁㄹ
암튼 다음 문제를 한번 이걸 응용해서 풀어보자
풀이 1
풀이 2
솔직히 이 경우엔 꽤 쓸모있는 것 같음. 이렇게 넓이를 구하기 편하고 그림이 유리함수로 미리 주어진 상황에선 생각보다 꽤 쓸모있음.
혹시 이 스킬을 쓸 생각이 있는 학생이 있다면, 앞선 문제처럼 유리함수 점근선이 오른쪽에 있으면 쓰지 말고, 이 상황 처럼 유리함수 점근선이 왼쪽에 있는 상황은 꽤 쓸만한것 같으니 이 때 써보면 좋을듯.
마지막 예제
풀이(귀찮으니 부피=몰수로 두고 풀음)
이 문제도 되게 유용함. 마지막 마무리에서 일차함수 기울기를 이용했는데, 투입한 B의몰수/C의몰수를 평행이동 하고 미분하는 느낌. 이거 말고도 다른 사설문제들에 적용 해 봤는데 꽤 풀리는 경우 많음. 유리함수 그래프가 이미 그려져있거나 그리기 쉽고, 왼쪽에 점근선 있으면 해볼만한 것 같음. 더 확장 가능성이 있어보이기도 하고..
핵심은
1)점근선의 의미 상상 및 값 추론(물질의 개수가 음수가 되는것을 허용하고 무한으로 극한을 보내기, 한계반응물은 고정)
2)유리함수 넓이 이용/유리함수 식 이용
이거 두개. 혹시라도 쓸 생각이 있다면 충분히 많은 연습을 하고 쓰는걸 권장하고 이 풀이로만 문제를 풀고 정석풀이를 연습 안한다면 수능 당일날 위험할 수 있으니 정석 풀이도 꼭 연습해보길 바람.
끝
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
세계사 0
동아시아사는 해보고 매우 만족스러웠는데 세계사도 비슷한가여?? 특성이나 장단점 알려주세요
-
서울대 자연대 , 상경계열 전공 육군 후방에서 복무중 질문 자유롭게 ㄱㄱ
-
갔다오고 나서 너무 피곤해가지고 아 다신 안 갈거야!! 했는데 막상 내년에 가고...
-
뭐야 수퍼소닉으로 오랜만에 컴백해서 반응 좋았고 삐끼삐끼나 뭐 그런 걸로 뜨기도...
-
재수안하고 버틸수있으려나이거
-
레전드기만 5
-
아 ㅅㅂ 3
인생 빨리 머리털 깎든가 해야지
-
이별안하는법 3
이건 드립치면 죽을듯
-
그나마 남초팬덤이던게 아이즈원 프미나였는데
-
주류집단인 솔로에게 저항하는거아님뇨? 반박안받음뇨
-
한번 쯤은 다시 생각해보라고 할 듯...
-
차피 스카이 공대쯤 갈 실력되면 대기업은 무난하게 갈 수 있는거 아닌가요?
-
올 수능 기준 언매 100 가까이 떠야 됨?
-
안 하는 거 아님ㅇㅇ
-
연고서성한 라인에서 신설이 아닌 학과는 작년컷으로 보정들어가서 개짠데 신설학과는...
-
공부해야되뇨 5
하기시름뇨..
-
행복하세요,,, 3
-
계약학과에 대해 궁금한 점이 있는데요, 계약학과는 말그대로 그 학과에 들어가면...
-
운동 끝나고 나면 얼굴이 8등급으로 보이는데 어떡함뇨 8
원래 9등급인데 갑자기 8등급처럼보임뇨 대박적상승임뇨
-
울면서 빈다 야가원
-
화학은 안되고 물리도 안될 것 같고 투과목은 ㅈㄴ 어려울테고 결국은 지1이네
-
맛맀다 주먹밥 넣고 콘마요는 꼭 넣지말고 먹르셈
-
흠뇨
-
출제자 하고싶은데 모집공고같은게 어딨는지 모르겠네요.. 기하선택인데 수학출제자로...
-
매월승리 병행할까 ㅇㅅㅇ
-
언매미적 사문정법 vs 화작기하 지1생2 치대~한의대 목표입니다 국수공통부분이랑...
-
25살에 대학 입학하면 학교생활은 어느 정도 포기해야할까요? 14
군필이고 25살에 대학 입학할거같은데 학교 생활을 어느 정도 포기하고 사는게...
-
질받 3
나이는 묻지 마세여 ㅡㅡ
-
절대로못하는게아님ㅇㅇ
-
표준점수가 입시에 영향이 가는건가요?
-
프미나 릴스랑 숏츠가 거의 절반인데 진짜 뭐임뇨
-
그러면 상처 받을 일도 힘들 일도 없는걸요
-
1. ㅈ도 없으면서 비아냥 대는 인간(실실 쪼개는 새끼들) 2. 상대를 종처럼...
-
교대갈걸 그랬나... 넘 힘들다 퓨ㅜㅜㅜㅜ
-
이거알음?
-
체력똥쓰레기라 Pt받을 때마다 쎈b스텝 하중중상 문제 4개 풀고 4개 다 틀리는...
-
전에 이거 실수로 썼는데 저 하얀 거 쓰는 거 아니지?
-
그치.. 이제 남은 맞는데 기분이 왤캐 10창나지.. 나랑 436일 만날 땐 잘도...
-
학원 알바 하는 중 심심해서 문제 하나 만들어봤어요! 4
예쁜 문제니 잘 풀어주세요!
-
뉴진스도 난리나고 메이딘도 가은이 탈퇴하고 시그니처도 터진다고 하고 여돌판 어지러운 11월 말...
-
......
-
한여자랑만 연애vs여러여자들이랑 동시에 연인관계
-
추버라 1
으
-
[칼럼] 표본의 이동 방향, 대체 학과, 기피 학과 0
*작년에 올린 두 번째 글입니다. 지난 글에서 말씀드렸다시피 검색밴이 풀려서...
-
김승리 매월승리 0
현강생인데 현장에서 사면 굿즈 안주겠죠
-
다른소속사랑 계약해서 16
다시만났으면 좋겠다... 프로미스나인... 눈물나네
-
제곧내… 과외구해도 너네 안올거자나ㅜㅜ
-
아일릿밖에 안남았다.. 아.
ㅁㅊ
음의 반응이라...
어떻게보면 화2를 끌어온건가
그런 느낌도 있고 화1을 뇌절의뇌절을쳐서 수리적으로 해석한 느낌
사실 이렇게 보는게 맞는듯
흠 좀더 찾아보고 올게요
아니 화1 머치동 강사들도 이런 스킬은 안 쓸듯...ㄷㄷ
wow..
저거 알려주신분 수학 고정100일듯;;
와 이건 진짜 신기하네 ㅋㅋ
생각지도못했다 ㅋㅋ
정신적으로 충격 받음 저게 뭐꼬
이. 이게 머노
누구는 1문제 푸는데 30분 걸리는데...
wow
밑에 예제 둘 다 깡계산으로 풀었는데 이게 능지차인가
당연히 저도 처음볼땐 깡계산..
화1에서 기울기도 땡큐한 건데 유리함수라... 대단하네요
뭔소린지는 모르겠지만 개추
한줄요약 : 그냥 생지해라.
안써도됨....
죄송합니다.. 생지러에게는 너무 어려워요..
물1 사세요...다항함수밖에 안 나오는 물1 사세요....
어림도없지 전기력 실계산문제!!
여러분 쉬운 물2하세요
이해는 못했지만 신기하니 좋아요 박고 갑니다
요즘에는 화학 문제 풀 때 '유리함수' + '점근선'까지 끌어와야 하는건가요?
어후... 타임어택이 예전보다 훨씬 심하겠네요.
아뇨 심심해서 쓴 글이고 이렇게까지 할 필요는 전혀 없어요
사실이런 풀이를 만들만큼 어렵게내는 과탐이 이상한거
오빠 제목이 너무 깐지나요
기출은 씹으면 씹을수록 새로운 맛이 나네요..