역함수 관계 도함수 질문!
두 도함수가 역함수 관계에 있으면 각각의 부정적분은 어떻게 될까요??ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
생각보다 국수를 좀 못 보고 탐구를 잘 보신 분들이 많은 거 같음.. 6
저도 좀 그런 편이긴 한데 저랑 비슷한 성적대에서 특히 국수 3이나 4등급이신데...
-
용두용미 내놔
-
삼극사기 지금생각해보면 진짜 말도안되는 책이긴 하다 7
아는 사람은 아는 내용이었다지만 과장 좀 보태서 수능유형 하나를 죽여버림 저도 고2...
-
과외받아볼까
-
이라고 간판에 적힌 식당에서 환불을 요구해본 사람이 있을까
-
내 옆에는 다 메디컬노리는애만 있어서 메디컬 꿈꾸는 애가 많다고 생각해서 플랜 B에...
-
나히아 최애의 아이 주술 이 중에선 그나마 양반인듯 최애의 아이 저건;; 하차하길 잘했다.
-
근데 시발 아는사람이어서 더 충격이었음
-
최저는맞춤
-
진짜 생명 2
왜 찍맞하기 쉬웠던거냐 누군 하나빼고 다풀었는데 오히려 하나 틀려서 44고 누군...
-
ㅇㄱ ㅈㅉㅇㅇ?
-
고옥! 고옥!
-
16프로 가자!!!
-
그정도 아님 ㄹㅇ로
-
닥전
-
지향점도 없고..
-
어그로 죄송합니다. 26수능 응시하게된 재수생입니다.(지1은 고정) 2년전에...
-
하늬하늬 2
한의대
-
진짜 ㅈ빠지게 했는데도 해야함? 내신충임
-
이번 수능 8월부터 시작해서 화작96 미적81 영어3 물1 45 화1 38...
-
닭볶음탕 3
에 발작하는 사람이 있대요
-
통합변푠지 분리변푠지 그런 건 아직 발표 안 한 거죠? 과탐 가산점이나 미적, 기하...
-
아이브 레이는 모르겠다
-
문과입니다 대략 어느 정도 갈 수 있을까요 ㅠㅠ
-
국어 22독서 24문학 24선택 수학 20번 격자점 문제 (답:776) 21번...
-
그게 나야 바 둠바 두비두밥~ ^^
-
의대 쓰고 3
면접없는 의대면 1월에 걍 군대가도 괜춘?
-
다니게될수도 있는 학굔데 산책삼아 다녀올까용?
-
언매 인강 ㅊㅊ 2
메가 언매 인강 누구 들어야함??
-
고속에 뜨는 등급 정도가 실채 등급이랑 비슷한가요 보통? 아니면 더 내려가나요...
-
재수 예정인 고3입니다 학교에서 다음주부터 일주일 AI 특강, 미용특강 일주일...
-
노엘콘은 겨우 취소표로 구했다만 이번엔 존나 빡셀 듯 에휴...
-
어디서 들었는데 부피 안곱하고도 할 수 있다는데 그런게있나요?
-
놀이터에서 음란행위는 24
왜하는거냐;; 안보일줄 알고 하는건가 다보이는데
-
국숭세단 중 한 곳 재학 중이었고, 6월에 공부 시작해서 가채점 기준으로...
-
82 92 1 50 45 인데 걸어놔서 세장다 스나로 쓸건데 어디 써야될까요..
-
투표해주세요유ㅠㅠㅠ
-
2027 수능은 헬파티 확정일듯 ㄹㅇ
-
작년기출 뽑아가는게 좋을까요 시험전에 읽게.. 풀기는 다 풀어봤는데
-
술한잔했습니다 3
오랜만에마시니까어질어질하네요
-
연대갈까 6
고3때는 연대가 로망이었는데 흠..
-
텔그 전적대 췤 4
아하!
-
크럭스 말대로면 미2 92는 표점 136 or 135임?? 6
진학사는 지금 138로 보고 있는데 수학 표점 1점 떨어지면 한양대식 8점 떨어져서...
-
과탐응 하
-
배달비 좀 깎아 주면 안 되겠니
-
지금 대성 렉 저만 걸리나요? 자꾸 버벅임 ㅜ
-
건대 스나간다 0
실채점 때 최소 4칸이라도 떠라
-
22 불수능 23 적절 24 불수능 25 적절 26 ?? 27 ??
-
이름이 비슷한 2022 MMA 민지 사진 보고 가세요
글쎄요.. 원 함수를 f라 하고, f의 부정적분 F, f역함수의 부정적분을 G 라고 하면
( F(x) - F(0) ) + ( G(f(x)) - G(0) ) = xf(x)
성립하는 것 말고는 잘 모르겠습니다.
ㅠㅠ무슨 말인지 모르겠어요ㅠㅠ좀만 자세히 설명...부탁드립니다.
syzy 님이 아시는데 오타 나신것 같아요. G(0)이 아니구요 G(f(x))예요.
자세히 보시면 별것 아니구 앞에 F 두개는 f의 0부터 x까지의 정적분이구 뒤의 두개는 f의 역함수 g의 정적분이죠.
두 개를 더해보면 사각형 넓이인 xf(x)가 나오게되죠.
아 감사합니다^^
식 다시 쓰면 ( F(x) - F(0) ) + ( G(f(x)) - G(f(0)) ) = x f(x). (f의 정의역이 0 을 포함할 때)
헬리르님 말씀처럼 원함수 f 그림 그려보시고, 그 역함수도 그려보신 후,
f 를 0~x까지 적분한 것 + f의 역함수를 f(0)~f(x)까지 적분한 것
이 직관적으로 무엇인지 살펴보면 됩니다. y=x 에 대한 대칭을 적절히 이용하면 이 넓이의 합이 두 변의 길이가 각각 (x-0) , (f(x)-0) 인 직사각형의 넓이가 되므로 x f(x)임을 알 수 있습니다. (혹은 적분이 음수가 되는 경우에는 적절히 넓이에 - 부호 붙여서 증명할 수 있고요.)
만약 정의역에 0이 없다면, 정의역의 임의의 두 원소 x,y에 대해
( F(x) - F(y) ) + ( G(f(x)) - G(f(y)) ) = x f(x) - y f(y) .
(정의역에 0이 있을 때에는 위 첫식에서, x 대신 y 대입한 식을 뺀 것으로 볼 수 있습니다.)
혹시 이 개념이 생소하시면 굳이 위 식들을 이해하려 하지 마시고, 원함수의 적분 및 역함수의 적분 사이 관계에 해당하는 예제를 통해 이해하시는 게 좋을 거 같다는 생각이 듭니다.
아ㅋㅋ감사합니다!
수능 과정까지는 별 관련성이 그래프에서 나타난다고는 하기 어렵네요. 그냥 수식 나올 때는 그 상황마다 알맞게 적분, 미분 하면서 풀면서 관계 추론하시면 될듯해요.
감사합니다!!ㅋㅋ