[EPINOKi] 매일 하나씩 틀리는 수학, 어떻게 공부해야 할까요
*이전글
6평 41313, 수능 11112 연세대 경제학부 합격 수기
열심히 공부했음에도 성적이 잘 안 나왔다면
**본인 간략 소개
2016 수능 성적 98(1) 100(1) 94(1) 50(1) 47(2) [전국석차 0.23%][서울대 경영 합격권]
고등학교 2학년 1, 2학기 내신 수학 과목 모두 1등급
2015, 2016 수능 수학 2년 연속 100점.
2015, 2016 모의고사 및 수능 수학 항상 1등급
안녕하세요. 에피노키입니다. 오늘은 수학 공부와 관련해서 쪽지 상담했던 부분을 여러분께 나눠보고자 합니다. 개인 상담에서 일부를 발췌한지라 글이 정갈하지 못하지만, 모쪼록 봐주시면 감사하겠습니다.
***
이제 수학 관련한 얘기를 한 번 해보겠습니다. 개인적으로 수학은 양이 중요한 과목이 맞다고 생각합니다. 하지만 가장 중요한 건, 문제를 얼마나 많이 풀었나가 아닙니다. 한 문제를 잡고 내가 얼마나 고민을 해봤나가 가장 중요한 문제죠. 수학 숙제가 많은 사람, 혹은 수학 문제 푸는 양에 집착하는 사람들의 특징이 뭔지 아시나요? 각 문제를 푸는 시간이 상당히 적다는 거예요. 문제를 보면 조금 고민해봅니다. 조금 고민해보다가 어떻게 풀지 감도 안 잡히면 몇 분 지나지 않아서 별표를 쳐버립니다. 절대로 그러면 안 됩니다. 특히 21, 29, 30번을 틀리시는 경우라면 더더욱 그렇게 하시면 안 됩니다.
제가 수학 문제를 풀었던 방식에 대해서 소개해드리겠습니다.
1. 시간을 재면서 문제를 푼다. 한 문제에는 5분을 배정한다.
2. 문제를 풀다가 5분이 되었을 때, 문제를 어떻게 풀어야 하는지 알겠고, 이에 다라 문제가 어느 정도 풀리고 있으면 문제 풀이를 계속한다. 문제를 어떻게 풀어야 할 지 감도 안 잡히면, 일단 그냥 넘긴다.
3. 그렇게 정해진 문제들을 쭉 한 번 다푼다.
4. 2번에서 넘겼던 문제들을 다시 푼다. 이 때, 문제와 씨름을 한다는 생각으로 접근한다. 어떻게든 문제를 풀고자 한다. 문제에 나와있는 조건들을 모두 나열해보기도 하고, 개념정리했던 부분을 다시 보면서 문제 해결의 실마리를 찾고자 노력하기도 한다. 어떻게든 풀어내야 한다. 시간에는 제한을 두지 않되, 정 시간이 부족하다면 한 문제 당 1 시간을 배정한다. 이렇게 해도 못 푼 문제들은 별표를 치고 넘어간다.
5. 별표를 친 문제를 제외하고 채점을 한다. 틀린 문제의 답을 체크하지 않는다. 이렇게 풀고도 틀린 문제는 계산 미스이거나 문제를 잘못 봤거나 둘 중 하나이므로, 채점을 하고 곧바로 다시 풀도록 한다. 대부분 그렇게 하면 다 맞는다.
6. 그렇게 해도 틀린 문제와 별표를 친 문제의 해설을 읽는다. 그리고 빠른 시일 내에 틀린 문제와 별표를 친 문제를 스스로의 힘으로 다시 풀어본다.
여기서 가장 중요한 부분은 4번입니다. 21, 29, 30번 같은 문제를 풀려면 스스로 많이 고민해보는 연습을 해야 합니다.
제 얘기를 하나 해볼까요? 예전에 30번에 지수로그 격자점 문제가 나오던 시절에 저는 꼭 격자점 하나를 덜 세거나 더 세서 문제를 틀리는 경우가 많았어요. 그래서 토요일에 이 문제를 해결하려고 한석원 실전모의고사 1회분을 들고 왔습니다. 1번부터 29번까지는 40분 동안 풀어냈습니다. 문제는 30번이죠. 어찌어찌 시간 내에 풀기는 했는데, 역시나 이번에도 하나를 잘못 세서 틀렸습니다. 그래서 다시 풀었죠. 풀고, 풀고, 또 풀고.. 계속해서 30번 풀려고 x축과 y축을 그려대고, 계속 점 찍고 그랬습니다. 점심 먹고 와서도 그리고, 그리고, 그리다 보니깐 이제야 내가 뭘 빠뜨렸는지가 보이더라고요. 그 때 시계를 보니 오후 5시였어요. 오전 10시 즈음부터 6 시간 동안 30번 문제 하나만 계속 풀었던 거죠. 시간 낭비 같아 보일 수도 있어요. 하지만 전혀 그렇지 않았습니다. 그 날 이후로 저는 30번 문제를 틀린 적이 한 번도 없었거든요. 6 시간 투자해서 30번을 계속 맞출 수 있다면 투자해 볼 만한 거 아닌가요?
과외 선생님이 실력이 좋다고 하셨는데, 사실 그건 배우는 학생 입장에서는 크게 도움이 되진 않습니다. 어쨌거나 시험장에 들어가는 건 과외 선생님이 아니라 수험생 본인이잖아요. 수험생이 가장 지양해야 할 풀이는 바로 간결하고 기막힌 풀이입니다. 처음에 그런 풀이를 보면 감탄을 할 수 밖에 없죠. 어떻게 이렇게 풀 수 있지? 정말 대단하다.. 뭐 이런 식으로요. 하지만 오히려 그런 부분 때문에 그 풀이는 위험합니다. 그런 풀이는 그 선생만이 생각해낼 수 있는 거지, 시험장에서 긴장한 수험생이 떠올릴 법한 풀이는 아니거든요.
수험생에게 가장 좋은 풀이는 무식한 풀이입니다. 어떤 상황 속에서라도 바로바로 기억해낼 수 있는 풀이가 가장 좋은 풀이예요. 그리고 그러한 풀이는 교과서 내에 있는 개념을 기반으로 이루어져야만 합니다.
(위의 사진을 참고해주세요)
이 문제를 예로 한번 들어보고 싶네요. 문제 풀이의 방향은 크게 두 가지입니다.
1. 세 변수를 모두 정규분포로 근사시킨 후 비교대조한다.
2. 큰 수의 법칙을 활용한다.
확실히 2번을 사용해서 문제를 풀면 ㄱ, ㄷ 선지의 참거짓 판별이 보다 더 수월합니다만, ㄴ 선지를 판별할 때에는 결국 1번 방식을 채택할 수 밖에 없습니다. 두 번째 풀이는 분명 간결합니다. 그리고 교과과정 내에 있는 큰 수의 법칙을 활용했습니다. 문제는 그래서 시험장에서 이 발상을 할 수 있는지의 여부입니다. 그리고 평가원이 이런 발상을 요구하는지의 여부입니다. 그러나 큰 수의 법칙이 교과과정 안에 있는 맥락은 통계적 확률이 수학적 확률로 근사 가능하다 정도입니다. 굳이 저렇게까지 생각을 할 필요가 없죠. 또한, 서로 다른 세 개의 연속확률변수를 다루는 상황에서는 큰 수의 법칙을 쓰기보다, 표준화를 시켜 상호 대조하는 것이 훨씬 더 자연스러운 풀이입니다. 이러한 근거를 바탕으로, 2번 풀이를 기각하고 1번 풀이를 채택할 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
최초합 윗순위들 말고는 반영비 때문에 설대로 빠질 점수도 안나오고 여기 죄다...
-
현역 3모 수학 8점 -> 현역 건대 -> 반수 성대 1
테크트리 완성
-
끄아아아아아아아아아악
-
나만 그대로냐 올 사람 다 온건가?
-
제발 거기로 다가라
-
이명학은Certified된명실상부일타강김지영은그냥사람자체가재밌음본인강팀충이라1타아니면...
-
개우울하다.. 에바야 그냥 스나 넣은 곳으로 다 가라고 난 이 학과에 진심이라고...
-
오느릐저녁 2
-
점공 왜케 우르르 들어오냐
-
실력임? 친구이야기긴 한데
-
난 2년정도 된거같음 근데 무민 전기쥐 본채만채 섹스중독자 설효림<<< 이분들은 나...
-
보통 2등급 나오고 운좋으면 1등급까지 나오는데 저는 효율적인 풀이법 이런거없고...
-
진짜 반수할때부터 1지망이었어서 백번천번고민하다가 안넣은게 고대심리인데 ㅋㅋㅋㅋㅋㅋㅋㅋㅅㅂ
-
언젠또 설대 39x정도랬더니 진짜 30등대 중경외시라... 추합 좀 많이 돌면 심연은 어디까지일까
-
박보영 vs 수지 박보영 (1) 수지 (2)
-
12일을 어떻게 기다려 에잇 퉤
-
제 동생 얘기입니다. 공부를 엄청 설렁설렁 한거같고, 특히 미적을 소홀히 하긴...
-
저는 대깨설이였는데 대가리 봉합당해서 근데 이왕 원서 썼으니까 쓴 사람들은 다 설대 가라..:
-
오즈 모고가 시즌 2,3인가? 그때 뭔가 말도 안되는 N제처럼 나옴
-
환급리스트에 없네
-
재수때 논술로 지거국 공대 합격하고 삼반수해서 이번에 고려대 인문대 갈것같은...
-
갠적으로 성뱃이 3
제일 내 취향임 연두색이 아주 예뻐
-
외대 노어 특 4
행복했다.. 슬슬 보내줄 때가 된건가 윗분들이 자꾸 목을 조여오는데..
-
지방과고생인데 서울대 낮공이 애매하게 되는 성적대입니다. 학과 서열을 나누고 싶지...
-
설대민지로 돌아올게요 ㅅㅂ
-
얼마나돌까요
-
걍 0칸일텐데
-
나도 뱃지 줘 1
언제 줘
-
뱃지 이뿌다 6
희희
-
일주일 만에 핸드폰을 쓰니 핸드폰의 소중함이 잘 느껴집니다
-
이번에도 못가면 좆되는데
-
이제 그냥 서연 서성한 중경외시고 하자
-
뭐가 문제지
-
내년 의대 0
메쟈~인설은 모집 하는건 가능함? 저긴 수용여력 있다고는 들음
-
난 2025년 11월 13일에 사망 후 다시 돌아왔다...
-
정직하게글쓰니까아무도안봐줘서어그로한번끌어봤다코털정리칼추천받는다.
-
기균은 점공 0
기균인데 점공안하는사람은 뭘까요... 허수거나 안정권...?
-
아이고 내 배야 데굴데굴
-
이번 미적 찍맞 쉬웠던 건 아무리봐도 고의인데 또 이렇게갈지 궁금하네
-
점공 못 봄? 너무하네ㅜㅠ
-
고대 중문 1
고대 중문 추합 몇번까지 돌까요 올해? 지금 진학사 기준 16등이라 불안하네요(13명 모집)
-
성 사과 4
643.xx 못붙겠지 죽으러간다 ㅃㅃ
-
얕지만 대략 조사해보니 24수능때는 미적92가 기하100보다 높고 25수능때는...
-
들어보신분들 어떠셨나요???
-
복학 확정! 5
반수 확정! 고대야 내년에는 꼭 만나자
-
나만눈안와 0
대구는 그딴거없어
-
[칼럼] 아무거또의 국어 기출 REF. 4 – 첫 문단 독해편 (feat. 데이터 이동권) 8
아무거또의 기출 REF. 3 – 첫 문단 독해편 (feat. 2409 데이터...
-
성대 인과계 5
성균관대 인문과학계열 최초합하신 분들 성대식 점수대가 어떻게들 되시나요??
-
진짜 개레전드네 1
아이디어 복습하는데 정확히 1 년전에 실수한데랑 똑같은데서 실수해서 틀렸어요
하나 틀리는게 아니라서 어떡하죠ㅠ
막연히 '다음부터는 눈 똑바로 뜨고 풀어야지!' 하는 것보다 구체적인 해결책을 만드는 게 중요한 것 같아요. 자주 하는 실수들을 노트에 모아서 깨작깨작 복습하는 것도 괜찮습니당. 좀 웃겨 보일 수도 있겠지만 (삼각형 넓이)=1/2*밑변*높이, 무한등비급수 문제를 항상 틀린다면 "초항, 공비"라고 문제 풀기 전에 적어 놓는다든지.. 전 1, 2학년 때만 해도 무등비 문제 계속 틀려서 저렇게 적고 문제 푸니깐 확실히 틀릴 일이 없더라구요.
감사합니다! 저 이제 삼각형은 절대 안틀려요 한번틀린이후로요 ㅎㅎ
에피기만
문과세여?
넵
정말 본인이 생각해내지 못했던 개념, 치환, 여타 여러가지 풀이 방법, 심지어 그래프 그릴 때 어디에서 틀렸는지도 꼼꼼하게 따져야 30번이 비로소 나에게로 다가와 정답이 되는 듯
사탐 기출이 우선인가요 아님 이비에스?
N수인데 지금 사탐공부 어떻게 해야할지 모르겠어요ㅠ 생윤은 새로 시작했고
윤사는 수특 개념 4번돌리고 문제는 푼것도 있고 안푼것도 있어요ㅠ 제가반수생이라 늦게시작해서요ㅠㅠ 기출은 재수때만 보고 올해는 일도 안봤네요 윤사.. 맘같으면 수특 2번은 개념 더 돌리고 싶은데 이비에스도 다못보고 기출도 못봐서 지금 어떻게해야할지 모르겠어요ㅠㅠㅠㅠ
역사 과목만 한지라 구체적인 조언은 못드릴 것 같네요ㅜㅡㅜ 역사는 20년 동안 기출에서 나온 선지 계속 우려먹다가, 1~2 문제 정도는 당해 EBS 혹은 교과서 지엽으로 내는 경향이 있어서, 어느 정도 기출 돌렸다 싶으면 EBS랑 교과서 지엽정리하는 게 좋은데.. 생윤사는..
저도 무식한풀이 지향하는지라 공감하네요! 좋은글감사드립니다
3등급왔다갔다중이라서 기출반복하며 푸는데 어떻게해야 남은기간 효율적인 수학공부를 할수있을까요 (문과)
고오오오옹감
근데도 어려움...ㅠㅠ
감사합니다!
와~ 정말 감탄하고 갑니다. 많은 깨달음이 있었어요. 감사합니다! ^^
우와....제가 수학 극복해낸 방법이랑 진짜 거의 똑같은 것 같아요 소름
맞은문제는해설안봐도돼요?
해설지가 괜찮다면 맞은 문제라도 해설을 보고 자신의 풀이와 비교하는 것이 좋습니다. 사실 수험생이 최종적으로 고려해야 하는 것은 "수능 시험장"입니다. 비록 스스로의 힘으로 문제를 푸는데 성공했더라도, '수능 시험장에서 이렇게 풀 수 있을까..'하는 문제들은 꼭 한 번씩 점검하고 넘어가야 합니다. 요컨대 "기가 막힌 발상"이 떠올라 문제를 풀 수 있었다든지, 풀이 과정 속에 연속성이 결여되어 있다든지, 교과과정 외의 이상한 공식을 이용했다든지 하는 경우에는 높은 확률로 그러한 풀이를 시험장에서 재현해내기 어렵거든요. 항상 최악의 상황을 염두해두고, 그러한 상황이 임할 때 나는 어떻게 대처해야 하는가를 끊임없이 고민해야 합니다.
음 이과인 제 입장은 21,29,30번의 풀이가 푸는사람마다 크게 다르지 않다는것입니다.
그래서 간결하고 평가원이 의도한 풀이를 어떻게 떠올리게 할 수 있을까에 초점을 맞춰야된다고 봐요
즉 무식하게 풀어야겠다는 태도는 평가원이 의도한바도 아니고 결국 실전에서 아무리시간을 줘도 풀지못하는경우가 많아서 조심해야된다고 생각해요(이과얘기에요)
아. 표현에 오해의 여지를 남겨 놓은 것 같네요. 무식하게 풀어야 한다고 표현한 것은, "시험장에서 생각해낼 수 있는 방식"을 가지고 문제를 풀어야 한다는 뜻이었습니다.
간결하고 기막힌 풀이에 주의를 기울여야 한다고 말한 이유는, 그러한 풀이들이 교과과정 외의 불필요한 공식에 기반을 두고 있거나, 발문의 흐름과는 전혀 상관없는 "우연적인" 풀이일 확률이 높기 때문입니다. 특히 상~최상위권 학생들이 이런 늪에 빠지는 것을 많이 봤거든요. 모든 기출 문제가 다 수월하게 풀리니깐, 어떻게 하면 더 간결하게 문제를 풀 수 있을까에 집착을 한 나머지 쓸데없는, 현학적인 풀이를 배워오는 경우가 상당히 많습니다.
만약 어떤 문제의 풀이가 교과과정 내에서 이루어지고 있고, 시험장에서 충분히 떠올릴 수 있는 발상에, 간결하기까지 한다면 더할 나위 없이 좋습니다. 그건 배워야만 합니다. 하지만 위 조건 중에 하나라도 위배되는 사항이 있다면, 그 풀이는 지양되어야 할 것입니다. 보통 간결한 풀이는 상기한 조건들 중 위의 두 개의 조건을 만족시키지 못하는 경우가 많습니다.
물론 "시험장에서 떠올릴 수 있는 발상인지"의 여부는 상당히 주관적이며, 임의적인 부분입니다. 그럴 때 발상을 채택할지 말지의 여부는 기출을 토대로 판단하는 게 바람직하다고 생각합니다. 20 여 년 간의 기출 문제 중에서 그러한 발상을 사용하는 경우가 많다면 그 발상은 당연히 숙지해야 할 것입니다. 하지만 그렇지 않다면 굳이 그런 발상을 이용해 문제를 풀 필요가 없습니다. 물론 시험장에서 그런 생각을 해낼 자신이 있다면 외워두는 것도 나쁘지는 않겠죠.