[박수칠] 곡선 밖의 점에서 그은 접선 문제 (feat. 변곡접선)
이 문제 아시죠?
기출 문제를 공부하다 보면 반드시 넘어야 할 산,
2014학년도 수학 B형 30번 문제입니다.
이 문제를 처음 봤을 때는
(곡선 밖의 점에서 그은 접선) + (방정식에 대한 도함수 활용) 콤보로 풀었는데
난만한님 포스팅에서 변곡 접선을 이용한 풀이를 보고선
‘이렇게도 풀리는구나’ 싶었죠~ (신선했음)
요즘에는 위 두 가지 풀이법과 함께
문제 해결에 필요한 개념과 논리를 보강해서 수업하는데
칼럼으로 쓰는 것도 괜찮겠다 싶어 끄적여 봅니다.
(이 유형이 수능에 다시 출제될 가능성은 낮지만,
변곡점과 변곡접선은 수학 가형에서 중요한 주제니까요.)
변곡접선을 이해하려면 먼저
곡선의 아래로 볼록·위로 볼록에 대한 정의부터 알아야 합니다.
대부분의 교과서와 기본서에
아래로 볼록·위로 볼록은 다음과 같이 정의되어 있죠.
위의 그림에서 점 P를 고정시키고,
점 Q가 곡선 y=f(x)를 따라 점 P로 한없이 다가가게 만들어 봅시다.
그러면 직선 PQ는 점 P에서의 접선 l로 한없이 다가가고,
선분 PQ 위에 있던 점들은 곡선 바깥쪽으로 나가게 됩니다.
따라서 위의 왼쪽 그림처럼 아래로 볼록한 곡선에서는 접선이 곡선의 아래쪽에만,
위의 오른쪽 그림처럼 위로 볼록한 곡선에서는 접선이 곡선의 위쪽에만
존재하게 되죠.
그렇다면 볼록·오목을 다음과 같이 정의할 수도 있겠네요.
(이 정의는 제가 지어낸 것이 아니라, Calculus에 있는 내용입니다.)
또한 ①의 역
'곡선 y=f(x)가 구간 (a, b)에서 아래로 볼록하면
모든 접선이 곡선의 아래쪽에 존재한다'와
②의 역
'곡선 y=f(x)가 구간 (a, b)에서 위로 볼록하면
모든 접선이 곡선의 위쪽에 존재한다'도
모두 참이며, ①의 역만 증명하면 다음과 같습니다.
따라서 '아래로 볼록한 것'과 '모든 접선이 곡선의 아래쪽에 존재하는 것',
'위로 볼록한 것'과 '모든 접선이 곡선의 위쪽에 존재하는 것'은
서로 필요충분조건입니다.
곡선의 아래로 볼록·위로 볼록을 접선의 위치로 정의하는 것에는
두 가지 장점이 있습니다.
첫 번째 장점은
’변곡접선’의 특성 한 가지를 알려준다는 것입니다.
아래로 볼록한 곡선에서의 접선은 곡선의 아래쪽에만 있고,
위로 볼록한 곡선에서의 접선은 곡선의 위쪽에만 있습니다.
그럼 아래로 볼록, 위로 볼록의 경계인
변곡점에서의 접선은 어떻게 될까요?
아래 그림과 같이
변곡점 오른쪽에서는 아래로 볼록한 곡선의 아래쪽에,
변곡점 왼쪽에서는 위로 볼록한 곡선의 위쪽에
접선이 존재해야 하니까 곡선을 뚫게 됩니다.
그렇다면 곡선을 뚫는 접선은 전부 다 변곡접선이겠네요.
두 번째 장점은
곡선을 향해 접선을 그을 수 없는 점의 위치를 알려준다는 겁니다.
아래로 볼록한 곡선은 모든 접선이 곡선의 아래쪽에 있으니
곡선 위쪽의 점에서 곡선으로 접선을 그을 수 없습니다.
마찬가지로 위로 볼록한 곡선은 모든 접선이 곡선의 위쪽에 있으니
곡선 아래쪽의 점에서 곡선으로 접선을 그을 수 없겠죠.
간단히 말하면 곡선의 안쪽에서 곡선으로
접선을 그을 수 없다는 얘깁니다.
그리고 삼차 이상의 다항함수처럼
아래로 볼록한 부분과 위로 볼록한 부분이 공존하는 곡선에서는
변곡접선을 추가해서 곡선으로의 접선을 그을 수 있는 점의 위치를
구분할 수 있습니다.
곡선의 볼록·오목과 변곡접선을 이해했으니
처음에 봤던 문제를 풀 차례죠? ^^
(1) 조건 (가)를 이용해서 함수 g(x) 구하기
(2) x절편, y값 부호, 점근선으로 함수 g(x)의 그래프 그리기
a>0로 가정하고 그래프 개형을 그리면 다음과 같습니다.
(3) 곡선을 향해 점을 그을 수 없는 영역 조사하기
다음 그림과 같이 함수 g(x)의 그래프에 변곡접선을 추가하면
곡선의 아래로 볼록한 부분과 위로 볼록한 부분으로
접선을 그을 수 없는 영역이 구분됩니다.
(4) 점 (0, k)의 위치 찾기
점 (0, k)가 y축 위의 점이므로
y축을 따라 이동하면서 곡선으로 그을 수 있는 접선의 개수를 조사하면
두 점 O, A 사이에서 곡선으로 3개의 접선을 그을 수 있음을 알 수 있습니다.
(점 A는 변곡점 ( 1, g(1) )에서의 접선과 y축의 교점)
따라서 k의 범위는 다음과 같이 구할 수 있죠.
참고로 점 (0, k)의 위치에 따라
이 점에서 그을 수 있는 접선의 개수 변화는 다음과 같습니다.
또한 a<0일 때도 같은 방법으로 조사하면
0 < k < -a/e가 되지만, 조건 (가)에 모순임을 알 수 있습니다.
[알림] 박수칠 수학 부교재 미적분2-미분법 단원을 아래 링크에 업로드했습니다.
이번에도 본교재 문제 외에 수능/모평 기출 포함 39문제가 추가되었습니다.
다음에 작업할 교재는 미적분1-적분법입니다.
(이제 끝이 보임!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다 오르비에 숨어있었군
-
제가 진학사를 아직 써본적이없는데요 1. a대학 b학과를 쓸 성적이 안되는...
-
프사바꿀까 0
얘가 제 최애캐이긴 한데 뭔가 프사 바꾸고싶다는 욕망이 들 때가 있음
-
나 ㅈ되는건가
-
지금이랑 똑같으면 기하해야겠다..
-
난 물1꿀과목 바이럴당해서 진짜 물1이 꿀인줄 알았음 8
이런미친새끼들아!!!!
-
일찍 자야지 2
미인은 잠꾸러기 는 농담이고 그냥 몸에 힘이 없음
-
기하할까 4
이건기하가맞다
-
어떻게 했어도 씹 goat학교인데
-
일단 제목 어그로 죄송하구요. 근데 순수 어그로까진 아니니 화내진 마시구요. 원래는...
-
기하가 체질이면 3
미적하는것보단 나을수도
-
[LoL] 2025 T1 Uniform Jersey 품절 4
- 도란 전사이즈 품절 - 오너 S, M 품절 - 페이커 S, M 품절 - 구마유시...
-
그래야 합법 재르비하는 걸 볼테니까
-
확통 3
고1 경우의수 완벽하게 할줄알면 그냥 다 끝인가요? 고1꺼하는데 ㄹㅇ 돌겠음......
-
국어는 재수때 6 9 수능에서나 그나마 인간구실 했고 수학은 3수 수능 가서야...
-
화1 바이럴 보다보면 15
화1 마려워짐 진짜 이만한 꿀과목 없는거 같은데 ㅜㅜ 당장 해야겠다
-
이 좋은걸 왜 모르지
-
심찬우T 생글 업로드 일정 어떻게 되는지 아시는분 댓글 부탁드립니다
-
전제1) 3등과 4등 사이 저 간격에 사람이 있더라도 전부 설대로 빠진다고 가정함...
-
[시작하기 전에 원문 주소 첨부 먼저 하겠습니다.]...
-
성대 인과계 0
645.3 추합 ㄱㄴ?
-
어떤 걸 받아가라 한다 내가 해봤는데 안됐다고 사기라고 한다 옆에 있는 직원한테...
-
돌고도는 3
물레방아
-
하…
-
제발 ㅠㅠ
-
지랭이
-
레전드 인생
-
감귤맛 요플레+블루베리. 감귤향이 은은하게 나면서 블루베리의 톡톡 터지는 식감 +...
-
앙망
-
이거 어떻게 쌓고 어디다 써먹을 수 있나용
-
이번에 더 좋은 대학에 가기 위한 도약일뿐 한양대 논술 기억하고 있겠다
-
붙여주세요 ㅜㅜ
-
-1등급, 받아들일 수 없는 2등급은 풀 필요 없음.—>바로 4규 시즌1으로…....
-
수학만잘봤으면 0
에휴 작년보다 훨씬 잘볼줄 알았지만 작년보다 훨씬 쳐망했네 수학만 잘봤으면 성대는 됐을텐데
-
국어를 잘하기 위해선 '뇌'를 키워야 합니다. 국어 실력과 독해 실력을 향상시키기...
-
앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙...
-
난 과탐을 해봤어요!!
-
2점인가 3점인가 몰?루
-
메가 환급 조건 0
모의,수능 다 입력했었고 모의지원도 다 했는데요 합격한 학교의 합격증만 가지고...
-
실권이있는건아니라도 옯당도 만들고 걍 지역구 옯회의원하나씩 뽑고 지역별로 당협위원장도 있고
-
시대컨 플로우 숏컷 전 숏컷 난도가 개애애애높아서 플로우를 더 좋아하긴함 둘 다...
-
나같은사람있음? 11
+1결과 국어수학 다 떨어짐 ㅁㅌㅊ?
-
점공 6명 남았는데 4등이 508이네요 추합 생각하면 504로 써볼만도 했나 싶어서 아쉽..
-
에휴다노...
-
??
-
메가 숭배하라 7
ㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅ진짜 찬양함 대 메 가 아니...
-
이런거 풀려면 입체도형 특징 다 외우고 있어야해요? 수능특강엔 입체도형 종류도 안알려주던데 ㅜ
-
22도 멸종위기종인데 19는 없어야만함...
무료로 볼 수 있다는 것에 감사합니다(_ _)
솔직히 관심 받고 싶어서 칼럼 쓰기 시작했는데 (나름 생산적인 관종 ㅡㅡ)
쓰다 보니 제 생각도 정리되고, 다른 분들 의견도 들을 수 있어서 좋더라구요.
이번 달 중에 확통 집필 시작할텐데 주요 부분들을 칼럼으로 쓰면서 의견도 구해보려고 합니다.
선생님 문제풀이 (2)에서 a값 양음판정 빼먹으신것 같습니다. 언급정돈 해주심이 좋을듯..
그러네요...ㅋㅋㅋ
알려주셔서 감사합니다.
아무래도 글이 길어지다보면 사소한 실수들이... ㅋㅋ
옹 포카칩현강에서 저거 아볼이면 접선이 곡선보다 아래에 있는거 증명했는데
고교수준에서 가능한 명제라 증명해줘도 될것같아요
좋은칼럼 감사합니당!!
그 부분 증명할 생각을 못했네요.
본문에 바로 추가하도록 하겠습니다 ^^d
옹 감사합니다
아이디어를 제공받은 제가 감사해야죠~ ^^
박수칠때떠나라
이분 꾸준하시네
아직 미분적분 어려운 난이도는 못 건드리는 실력이라ㅎ..
스크랩해놓고 나중에 풀고봐야징 감사합니다!
안지울테니 나중에 꼭 봐주세요~
이해안되는 부분 있으면 댓글로 질문 주시구요.
좋네요. 잘보고갑니다
읽어주셔서 감사합니다~
가독성 죽여줍니다
쉽게 읽힌단 뜻이죠?
감사합니다~ ^^
변곡접선 !!제가찾던건데 다른사람들은 접선갯수정도로만얘기하니 영 그랬는데 감사합니다
도움이 되었다니 다행입니다!!
어느 점에서 접한다면 곡선을 뚫고 접해도 접선이라고 정의하나요?
물론입니다.
곡선 y=f(x) 위의 점 P에서의 접선은
곡선 위의 동점 Q가 곡선을 따라 정점 P로 한없이 다가갈 때
직선 PQ가 한없이 다가가는 직선으로 정의되거든요.
이 정의만 만족시킨다면
곡선을 뚫느냐 뚫지 않느냐는 따지지 않습니다.
예를 들어 두 곡선 y=x², y=x³의 원점에서의 접선은 x축과 일치합니다.
이때, x축은 곡선 y=x²은 안뚫지만, 곡선 y=x³은 뚫습니다.
보통 변곡점과 점근선에서 접선의 개수가 바뀐다는데 점근선에서 바뀌는 경우 설명해주실수있나요??
함수 g(x)의 그래프에서 구간 (4, ∞)에 존재하는 곡선은
x축 위쪽에서 x축으로 한없이 다가갑니다.
만일 x축 아래쪽의 점에서
구간 (4, ∞)에 존재하는 곡선으로 접선을 그을 수 있다면
그 접선의 기울기는 양수가 되겠죠.
그런데 이 사실은
구간 (4, ∞)에서 g'(x)<0인 것과 모순됩니다.
따라서 x축 아래쪽에서는
구간 (4, ∞)에 존재하는 곡선을 향해 접선을 그을 수 없고,
x축 또한 곡선으로 접선을 그을 수 없는 영역의 경계가 됩니다.
좋군요 사야겠습니다
감사합니다~
구입 전에 아래 링크에 있는
부교재와 정오표도 미리 살펴보시기 바랍니다.
http://orbi.kr/0005897498
총 몇 쪽인가요
본교재(종이책) 기준으로
미적분1은 314쪽, 미적분2는 254쪽입니다.
이런칼럼도 들어있나요
위 칼럼은 교재에 단원별로, 유형별로 흩어진 것을
한 곳에 모아서 정리한 것입니다. 교재에 없는 내용도 있구요.
칼럼 내용 가운데 교재에 없으면서 수능에 도움될만한 것들은
위 링크의 '정오표+도움말'에 따로 설명하고 있습니다.
(3) 곡선을 향해 점을 그을 수 없는 영역 조사하기 에서 1이전에 1개가능하지않나요?
(3)에서 하려는 얘기는
회색 영역 안의 점에서 그 영역의 경계에 포함된 곡선을 향해
접선을 그을 수 없다는 의미입니다.
접선 개수는 (4)에서와 같이
점 (0, k)가 y축 위에 있음을 이용해서 세는 것이 좋구요.
만일 (3)에서 각각의 영역별로
그을 수 있는 접선의 개수를 세려고 하면 많이 복잡해집니다.
영역 내의 점에서 그을 수 있는 접선 개수, 영역 경계에서 그을 수
있는 접선 개수에다가 x축까지 고려해야 하거든요.
(x→∞일 때의 점근선인 x축이 구간 (4, ∞)에 속한 곡선을 향해
접선을 그을 수 있는 영역을 구분하는 경계가 되기 때문)
예를 들어 (3)의 그림에서 두 회색 영역 가운데 작은 쪽을 x축으로 자르면
x축 위쪽의 회색 영역에서 곡선을 향해 그을 수 있는 접선은 2개,
x축 위의 점에서 곡선을 향해 그을 수 있는 접선은 1개,
x축 아래쪽의 회색 영역에서 곡선을 향해 그을 수 있는 접선은 1개입니다.
접선 개수 잘 안세지면 알려주세요.
본문에 그림 추가해드릴께요~
잘세지는데 마지막에 총접선개수를 요약하는 그림을 그리면 깔끔할듯 하네요
추가했습니다~ ^^
해설너무좋네요
확통 집필할 때는
이런 방식으로 칼럼 쓰면서 피드백 많이 받아야겠어요.
저도 정리가 되고, 더 좋은 책을 쓸 수 있을 것 같습니다.
(3)의 그림과 비슷하게 삼차항의 계수가 음수인 삼차함수에서 변곡점에서의 접선이 그 함수의 접선이 가질 수 있는 기울기 최대값인데 회색영역 안의 점에서 (그나마 가능성 있는) 변곡점으로 그으면 변곡점에서의 접선의 기울기보다 더 커지게 되니까 회색영역 안에서 그걸 둘러싼 곡선에 접선을 긋는 것은 불가능하다고 봐도 되나요?
회색 영역 안의 점에서 변곡점으로 직선을 그으면
변곡접선보다 기울기가 클 수도 있고, 작을 수도 있어서
댓글과 같은 방법으로 설명하기는 어렵지 않을까요?
박수칠 선생님 항상 좋은 글 감사합니다
저는 문과생인데요,
혹시 실례가 되지 않는다면 제 글('허근 가지는 삼차함수'라는 제목의 글)에 명쾌한 답글 달아주실 수 있나요? 아직까지 "뚫접"에 대한 개념이 잘 안 잡혀있어서요....ㅠㅠ 부탁드립니다
다음 칼럼 뭐쓸까 고민하다가
'다항함수 그래프와 직선이 만나는 모양'에 대해
써야겠다고 생각하고 있었는데...
댓글보고 깜놀했네요 ㅋㅋㅋ
박수칠 수학-미적분1에서도 뚫접에 대해 썼는데
아래로 볼록, 위로 볼록, 변곡점이라는 표현을 안쓰려다 보니
'접한다'와 '접점 좌우에서 함숫값 부호가 변한다'로 설명했습니다.
아마 금요일쯤에 칼럼 올릴 것 같은데
그때 읽어보시고 궁금한 부분 질문주세요.
와 좋은글 감사합니다 확통관련 칼럼도 기대하고 있을게요^_^
지금 마무리 단계인 미적분1, 2 부교재 작업이 끝나고
확통 집필 시작하면 칼럼 주제도 확통 쪽으로 쏠리지 않을까 싶습니다.
그때도 관심 부탁드립니다~ ^^
궁금한게 있는데요 만약 그래프위의 한점에서 그은 접선이 다른점과 또 접한다면 접점의 갯수는 2개인데 접선의 갯수는1개 잖아요. 일반적으로 접점의 갯수를 접선의 갯수라고 그냥 파악해도 되나요??
지금까지의 기출로 보면 곡선 밖의 점에서 곡선으로 접선을 그을 때
(접점의 개수) = (접선의 개수)라고 봐도 큰 무리는 없습니다.
다만 얘기해주신 경우처럼 곡선 밖의 점에서 곡선으로 접선을 그을 때
곡선과 두 점에서 접하는 접선이 포함되어 있다면
(접점의 개수) > (접선의 개수)가 되겠죠.
예를 들면 점 (2, 0)에서 곡선 y = x²(x-1)²으로 접선을 그을 때
접점은 4개지만, 접선은 3개가 나타납니다.
처음 보는 문제에서 이런 경우를 걸러내려면
곡선 개형을 파악해서 접선을 그려보는 과정이 필수겠죠.
최근에 이문제 풀고 궁금한게 생겨서 찾던도중에 발견했네요. 감사합니다. 딱 제가 찾던 내용..ㄷ
몇 달 전 글인데 용케 찾으셨네요 ^^
읽어주셔서 감사합니다!