[박수칠] 상용로그의 지표와 가수, 수능에 나올까? 안나올까?
최근 오르비 수학 게시물을 보면 자주 올라오는 질문이 하나 있습니다.
“개정수학에 지표, 가수 안나오죠?”
분명 지표, 가수가 교육과정에서 빠졌단 얘길 들었는데 문제집을 풀다 보니
‘… 몇 자리 정수인지 구하시오’
‘… 소수 몇 째 자리에서 처음으로 0 아닌 숫자가 나타나는지 구하시오’
‘… 최고 자리 숫자를 구하시오’
라고 당당하게 물어보거든요 ㅡㅡ;
그럼 불안해집니다.
‘와~ 이거 공부 안했다가 뒷통수 맞는 것 아냐?’
고민 끝에 오르비에 질문 글을 올리면
다양한 댓글이 달립니다.
‘안나온다’
‘정수부분, 소수부분으로 이름만 바뀌었다’
‘약화되었지만 나오긴 나온다’
어느 쪽이 맞는 얘긴지 알 수가 없죠.
그래서 지금까지 공개된 내용들을 정리하는 글을 쓰기로 했습니다.
(그래봤자 교육부 고시와 9종 교과서가 전부지만요 ^^)
평가원 문 앞에도 안가본 주제에 감히
‘지표와 가수가 수능에 나온다, 안나온다’를 말하겠다는 것이 아니라
수험생에게 객관적인 정보들을 제공해서
공부 방향을 잡는데 도움을 드리려는 것이 이 글의 목적입니다.
먼저 교육과정의 뼈대가 되는 교육부 고시부터 살펴봅시다.
아래는 2007 개정 교육과정(2016학년도 수능 적용)에 대한 교육부 고시에서
상용로그 관련 내용입니다.
지표, 가수라는 용어를 명확히 하고 있죠?
2007 개정 교육과정 해설서에서 상용로그 항목에 대해 설명한 것을 보면
무엇을 가르치려는 것인지 명확히 알 수 있습니다.
지표는 진수의 자릿수, 가수는 진수의 숫자배열과 관련이 있음을
이해하게 한다고 되어 있네요.
다음으로 2009 개정 교육과정(2017학년도 수능 적용)에 대한 교육부 고시에서
상용로그 항목을 살펴봅시다.
2007 개정 교육과정에서 ②, ③ 항목이 합쳐지고,
지표와 가수가 사라졌네요.
이것이 무엇을 의미하는가?
지표와 가수라는 용어만 정수부분, 소수부분으로 바뀌었다는 것이 아닙니다.
지표와 진수의 자릿수, 가수와 진수의 숫자배열 사이의 관계를 다루지 않는다는 것이죠.
(교육과정 해설서가 있으면 더 확실할텐데… 2009 개정 과정은 못찾았네요.)
그럼 교과서는?
2009 개정 교육과정에 맞춘 9종 교과서에서 지표, 가수에 대한 내용을 찾아봤습니다.
지표와 진수 자릿수의 관계를 다루는 교과서는 3종,
가수와 진수 숫자배열의 관계를 다루는 교과서는 없습니다.
교과서를 보니 확실해지죠?
그렇다면...
2016학년도 수능 B형 20번과 같은 문제는 안나온단 얘깁니다.
지표와 진수 자릿수의 관계를 이용해야 되니까요.
반면에 2016학년도 수능 A형 30번과 같은 문제는 애매합니다.
가수를 진수의 숫자 배열과 연결시키지 않고, 단순히 소수부분이라는 의미로 썼거든요.
게다가 로그함수 그래프 문제라 2017 수능 가형과 연결되는 부분도 있습니다.
2014학년도 수능 A형 20번 문제도 마찬가지입니다.
지표와 가수를 단순히 상용로그의 정수부분, 소수부분의 의미로만 쓰고 있죠.
6월 모평을 통해 상용로그 유형이 확실해지기 전까지는 이처럼
지표, 가수를 단순히 정수부분, 소수부분의 의미로 사용한 문제를 배제할 수 없습니다.
따라서 결론은 이거죠.
(1) 지표와 진수 자릿수, 가수와 진수 숫자배열 사이의 관계를 다루는 문제는 안나온다.
(2) 지표와 가수를 단순히 정수부분, 소수부분의 의미로 사용하는 유형은 아직 불확실하다.
이왕 시작한 거… 몇 가지 더 알아보겠습니다.
아래 표들은 수학2, 미적분1, 미적분2, 기하와 벡터에서
교육부 고시에 없지만 일부 교과서에 포함된 개념,
교육부 고시에 있으면서 교과서별로 서술 방식이 다른 개념,
교육부 고시와 관계 없이 교과서별로 차이가 있는 유형들 가운데
일부를 골라 정리한 것입니다.
하나하나 보면서 설명드리죠.
<수학2>
군수열 유형은 수능, 모평에서 본 지 오래됐죠?
가장 최근 군수열 문제가 '이거 군수열 맞어?' 싶을 정도로 간단했고,
교육과정 개편으로 계차수열까지 없어졌기 때문에 출제된다 하더라도 쉬울 것으로 예상됩니다.
점화식으로부터 수열의 일반항을 구하라는 문제도 나온다, 안나온다 얘기가 있었는데…
교육부 고시에는 아래와 같이 서술되어 있습니다.
여기도 감이 오죠?
간단한 점화식을 만들어서 푸는 문제는 나올 수 있지만,
복잡한 점화식으로부터 수열의 일반항을 구하는 문제는 안나온다는 것으로 해석됩니다.
표에 나타나 있듯이 대부분의 교과서에도
점화식으로부터 일반항을 구하는 문제를 다루지 않고 있죠.
<미적분1>
미적분1에서는 교육과정에 포함되느냐, 안되느냐 걸리는 부분은 없고,
교과서 한 종류만 극대, 극소의 정의가 안바뀐 것이 눈에 띄네요.
넓이, 부피의 시각 t에 대한 변화율 문제가 없는 교과서가 많은데,
2007 개정 교육과정의 미적분과 통계 기본에서도 포함되어 있지 않았던 부분입니다.
하지만 개념이라기 보다 도함수 활용의 한 유형이기 때문에
안나온다고 장담은 못하죠.
<미적분2>
단위원을 이용한 해법, 두 직선이 이루는 각의 크기, 삼각치환 문제는 유형쪽이라
교육과정 포함 여부를 고민할 대상이 아니고...
2배각 공식이랑 삼각함수의 합성이 눈에 띕니다.
2009 개정 교육과정에서 배각, 반각 공식이 빠지긴 했지만
배각 공식의 경우 덧셈정리에서 바로 쓸 수 있기 때문에
알아두는 것이 좋겠습니다.
삼각함수의 합성을 싣지 않은 교과서가 있다는 것이 의외죠?
교육부 고시에 서술되어 있지 않기 때문이죠.
비교를 위해 2007 개정 교육과정의 해설서를 봅시다.
삼각함수의 합성 항목이 있는 것 보이시죠?
그런데 2009 개정 교육과정에 대한 교육부 고시를 보면
'삼각함수의 덧셈정리 활용'에 대한 부분이 없어졌습니다.
아무래도 2017 수능에선 삼각함수의 합성에 대한 문제를 보기 힘들 것 같네요.
<기하와 벡터>
기벡에서도 교육 과정 포함 여부에 대한 이슈가 없기 때문에
평면벡터의 내적에 대한 증명 방법만 찾아봤습니다.
코사인법칙이 삭제된 마당에 어떤 방법을 썼는지 궁금하니까요.
표를 보니 방법이 다양한 건 알겠는데... 뭔 얘긴지 잘 모르겠죠?
요청하는 분들이 있으면 증명 방법에 대한 글을 나중에 따로 쓰도록 하겠습니다.
본문에 언급된 내용 외에
추가로 비교하고 싶은 개념이나 유형이 있으면 댓글 달아주세요.
황당한 요청만 아니면 바로 찾아서 내용 업댓 하겠습니다 ^^
그리고 마지막으로 당부 한가지!
이 글의 내용은 참고만 하시고, 나온다 안나온다 너무 따지지 마세요.
새 교육과정에 맞는 기출 시험지가 없는 상황이라 혼란은 불가피하고,
따질 시간에 하나라도 더푸는게 실력 향상의 길이니까요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
문과 존경스러움 5
확통이나 사탐 하는거보면 진짜 토나오는데 어케 읽고 푸는거지
-
고등학교때만해도 담배피는애들은 뭔가 양아치 같았는데 2
재수학원 가보니까 진짜 개나소나 다 폈던거같음
-
상상 5-9 0
인문 시간 부족으로 13~16번 3으로 밀었는데 1개도 없네..
-
헬스장 0
걍 체력이나기르자
-
과거시제 선어말어미 ‘-었-’은 이형태가 존재하지 않는다고 한다… ‘-았-’은...
-
뭐지
-
나올수도있긴하다고 생각하지만 ㄱㄴㄷ 따로안품 풀어도 ㄱㄴㄷ가 더 잘맞고 그러진않는듷...
-
통합취지를 살리려면 선택과목을 없애야한다고 생각해요.... 2
본인 받은 점수로 정직하게 대학가야지 어떤 과목은 유리하고, 어떤 과목은 불리하고,...
-
30번 하나남았는데 어캐하는지 모르겟넹
-
둘러싸인 부분이 두 개구나 ㅋㅋㅋ
-
그중 2번을 올해 훈련소에서 가봄
-
07 전화
-
2026 모집요강 쭉 보니 안되는 학교가 더 적은거 같고 대부분이 3~5퍼 과탐가산이거나 가산 없음
-
불행한 인생인듯.. ...
-
성지순례용 글 8
22수능: 불국어 평수학 불영어 불과탐 23수능: 물국어 약불수학 평영어 불과탐...
-
임정환도 터진 적 있음?
-
진짜 ㅆㅂ 매체풀다 집어던질뻔했네 매체 4틀은 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
이거 행운임 뭐임??????
-
수능날 고정 백분위 96 시켜주면 함?
-
감기걸림
-
수능 센빠이들 오늘의 운세 말대로 조언좀 부탁합니더
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 1
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
생지 하는 중인디 사탐런 해야하나 고민중 지금까지 해온게 너무 아깝긴 하지만…...
-
이거 사설틱한거 같은데 평가원에서 나오면 틀렸다고 판정해도 되죠? 지문에서도 장원...
-
나오면 이해 1도 안 되고 뭐 받음각이 어쩌고 제자리에서 회전 이런 거 뇌가...
-
수능날은 2
추워야 제맛이라고 생각해요...
-
내일의 운세 2
클났다
-
10초짜리 다큐 한 편 뚝딱
-
다음주에 논술인게 안믿김;;
-
문학 8틀해서 79 나옴 흑흑 과학 예술 경제 나왔는데 과학도 좋아하는 화학지문...
-
사주믿는사람? 5
운세같은건 크게 안믿는데 사주오행은 조금 참고하는 편 오늘 물어봤는데 푸른색이 좋다...
-
22.23 수능 0
사문.정법.경제 항상 2.3등급. -> 27수능 대비로 쌍지로 트는거 ㄱㅊ? 목표는...
-
감기걸렸는데 2
수능 D-9에서 감기가 심하게 걸러벼렸는데 약먹고쉬는게나을까요 아니면 그래도 좀...
-
ㅈㄴ 아무 이유 없이 웃김ㅋㅋㅋ
-
문과고 탐구를 사문이랑 생윤or세지 선택할건데 메가패스랑 19패스 중에 뭘 사는 게...
-
ㅠㅠ 또 나만 어렵지..
-
마음먹다는 두자리 서술어 맞나요?
-
마이 퓨처 6
-
- 강은교, 자전 1 이래서 내가 살이 쪘을때 티가나는거였군
-
매년 강사 오개념 논란 평가원 교육청 모의고사 문제 논란 암기량 꽤나 있음(사상...
-
가고싶은 대학&학과는? 16
댓에 적어주세염 일단 나브터 동국대 경행
-
난이도인 국어실모 추천 부탁드려욥
-
머가 더 쉬운거같으세요
-
우하하
-
동아리 활동을 동아리 담당 선생님께서 공부잘하는 친구에게 제 활동을 복붙해준 것...
-
내년에 나랑 경쟁함
-
잇올커리 1
잇올가면 커리 다 짜주시나요? 메가 대성 패스 있으면 그걸로 짜는거죠?
-
아침은 커피랑 먹어야지...ㅋㄱㅋ
우왕 평소에 궁금했던건데ㅎㅎㅎ감사함니당!
와... 이 새벽에 첫플!
감사합니다 ^^
제발 이런거 자주자주자주 올려주세요 이제 고2올라가는데 학원에서 자꾸 상용로그 응용문제 대수능 30 나올거라고 대비하래요 ㅠㅠ 이런거 자주부탁드립니다
상용로그 응용문제라고 하면 좀 생뚱맞고...
지수함수, 로그함수 그래프 문제라면 가능성이 좀 있죠.
가형, 나형이 마지막으로 실시된 2013학년도 수능까지
지수함수, 로그함수 그래프 개수 세기 문제가 공통 30번이었거든요.
2016학년도 수능 A형에서 30번 문제가 그래프 교점 위치를 묻는 문제로
바뀐 것에도 의미가 있지 않을까 생각하고 있습니다.
다만 B형에서는 변별력 문제가 미적분, 공도벡이었던 만큼
어느 쪽이 나올지는 6평까지 기다려봐야죠.
아 문과입니닷 ㅎㅎ..
앗! 실수했네요 ^^
상용로그 단원이 약화되고 지수함수, 로그함수 그래프가 사라져서
상용로그 관련 30번 문제가 나올 가능성은 매우 낮습니다.
개인적으론 정말 오랜만에 직접 출제 범위로 들어온
함수 단원에 주목하고 있어요.
올려주시는거 항상 프린트하고있습니다 감사합니다 고맙습니다 ㅠ
정성스럽게 읽어주시면 저도 다음 글을 쓸 힘이 납니다.
감사합니다 ^^
퍄...잘 읽었습니다 (_ _)
매번 찾아주셔서 감사합니다 (^ ^) (_ _)
잘 읽었어요 ㅎㅎ
감사합니다~ ^^
이런교육부고시나교육과정해설서같은건어디서구할수있나요??
국가교육과정 정보센터 ( http://ncic.kice.re.kr )
자료실에서 누구나 다운받을 수 있습니다.
감사합니다
좋은글 잘읽었습니다. . . 감사합니다!!
읽어주셔서 감사합니다~ ^^
이과생인데요. 혹시 가수 그래프도 그릴줄 알아야 할까요?? 단순히 가우스 개념만 알아도 그릴 수 있다고 하시면서 기출문제집에 넣으시더라고요
가우스 알면 편하겠지만, 몰라도 그릴 수 있습니다.
(소수부분)=log x-(정수부분)이니 정수부분에 따라 x 범위 나누면 되니까요.
저도 부교재 연습문제에 작년 수능 A형 30번 넣었는데... ^^;
아래 링크에 첨부된 파일 가운데 밑에서 두 번째 72번에 해설이 있으니 참고하시기 바랍니다.
http://orbi.kr/0005897498
웬지 이제 문과 30번은 수학 1개념+간단한 개념 복합문제로 작년처럼 나올거같아요 ㅜ
저는 수학2 함수 단원과 연결된 그래프 문제 예상합니다~
님 노크 하시네요 ~ ^^
아... 댓글이 이해가 안돼요 ㅜㅜ
노크 = 똑똑 ^^
감사합니다.
나이를 먹으니 센스가 떨어지네요 ㅜㅜ
이과 미적1은 어느정도로 공부해야 할까요?
기출까지 돌려야하나요?
아니면 기본정석 정도만 무난하게 풀수있으면 될까요?
미적분1은 미적분2와의 연관성이 크기 때문에
수학1, 2처럼 가볍게 공부하는 것은 좋지 않다고 봅니다.
최소한 함수의 극한/연속, 미분법, 적분법의
개념 관련 문제는 기출까지 돌리는 것이 좋다고 봅니다.
미적분1 개념에 초월함수를 결합시키면 미적분2 문제가 되어버리니까요.
미분법 활용에서 삼차함수, 사차함수 관련 문제도
기출까지 보는 것이 안전할 것 같습니다. 변곡점을 포함하고 있기 때문에
미적분2 문제로 둔갑시키기도 쉽죠.
6평 유형을 보고 공부 방향을 결정하면 좀 늦은 감이 있기 때문에
최소 이 정도는 해두는 것이 안전하리라 봅니다.
감사합니다
어차피 독학생이라 시간은 넉넉하니 그냥 미적1도 6월까지는 다른과목처럼 아예 다 공부해야겠네요
지금 시점에서는 그 방법이 최선이라 봅니다 ^^
이과 교육과정 질문합니다 이과 직접수능범위가 미적2, 확통, 기벡 이 세단원밖에 없는데 그러면
이제 앞에 2,3점을 차지하던 수열문제 등은 더이상 볼 일 없는 건가요?
그런 셈이죠. 단독으론 절대 나오지 않고,
문제 조건이나 풀이 과정 등에 섞이는 형태가 될 겁니다.
죄송한데 그럼 지수로그 함수 부분에 수열이 섞여서 일반항을 구하던지 시그마를 취하는 형태는 나올수 있다는 말씀이시죠?? 갯수세기 문제 이런 곳에서요...ㅜㅜ 제가 그 문제 유형을 싫어해서ㅜㅜㅜ
가능하긴 한데... 정말 나올지는 모르겠네요.
과거 가형/나형 공통 30번 문제가 그런 형태였는데
A형/B형으로 바뀌면서 B형 30번은 미적분 문제로 바뀌었지요.
(2015 수능에서는 미분법 문제에 시그마가 있었네요.
개수 세기는 아니지만...)
제 개인적으로는 2017 수능 가형 30번이
과거 가형 30번처럼 지수함수, 로그함수 그래프 문제로 돌아가기 보다는
기존 B형처럼 미적분 문제가 나올 것으로 예상하고 있습니다.
어휴...
무슨 문제라도 있으신지?
상철아저씨 박수칠미1 내신대비 가능해요??
이름도 틀리고, 아저씨까지 붙이다니... 너무하시는듯 ㅜㅜ
내신용으로 보려면 개념/유형만 공부하고 심화부분은 건너뛰면 됩니다.
(회색 동그라미로 심화, 수능, 모평, 학평, 실력 표시된 부분)
문제 수가 적어서 연습이 부족할 수 있기 때문에
적당한 내신 문제집과 병행하면 더 좋구요.
성함이 박수칠 이세요...? 박상철 이라고 들었는데
박상'칠'입니다 ㅋㅋㅋ
어멋 죄송해요 ㅋㅋㅋㅋㅋ 근데 수2랑 확통도 만드시나여? 만든다면 언제쯤
괜찮아유~ ㅋㅋㅋ
미적분1, 2 부교재 작업 끝나면 확통 집필 시작합니다.
올해 여름~가을 사이에 나올 예정이구요.
그 다음 기벡-수2 순으로 집필 예정인데
수2는 내년 하반기에나 나올 것 같습니다.
저 수능볼땐 볼수있겠네요 ㅎㅎ
수2는 최종 정리용 교재가 되겠네요 ^^
시기 잘 맞춰서 수능 대비에 활용할 수 있도록 하겠습니다.
코사인 제2법칙 공부할 필요가 있을까요?
개정 교육과정의 삼각함수 파트는 통합/약화되면서
과거와 같은 복잡한 도형 문제가 나올 가능성이 낮아졌습니다.
그래서 공부할 필요가 없다고 봅니다.
자세한 내용은 아래 포스팅을 참고하시구요.
http://orbi.kr/0007756992
그래도 찜찜함, 불안감이 안없어지면
정신 건강을 위해 공부해둬야죠.
이과 재수생입니다. 좋은 자료 감사해요!! 그래도 도대체 올해 문제구성이 어떻게 될지는 감이 안 잡히네요... N수생이 올해 수학에서 힘을 쓸 수 있을지 걱정이에요ㅜ
저는 올해 입시에서 재수생이 조금 더 유리하다고 생각합니다.
배워야 할 내용이 줄어드는 방향으로 교육과정이 개정됐기 때문에
현역에 비해 문제 풀이 도구가 더 다양한 면도 있고
수능 출제 범위가 선택 과목 위주로 바뀌었기 때문에
조금 더 깊이 있게 공부한 쪽이 고난도 문제에 다가가기 쉬울 것 같거든요.
일단 6평까지는 폭넓게 개념과 기출을 공부해두고,
6평에서 출제 방향에 대한 감이 잡히면 선택과 집중을 하는 것이
옳은 방향이라 생각됩니다.
현역들의 혼란은 N수생에 비해 더하면 더했지 결코 덜하진 않습니다.
너무 걱정 마시고, 학습 계획 수립과 실행에 더 신경쓰시기 바랍니다 ^^
수칠님 금요일날 배송주문 했는데 오질않습니다 ㅠㅠ
박수칠 수학 미1
아톰 공지 보면 4일 이후 주문 건은
택배사 휴무 때문에 목요일부터 출고된답니다.
아마도 금요일에 받으실 수 있을 것 같네요.
조금만 기다려주세요~
으아아아앙아어아어렁ㅇㅇㄹㅎ아아아아아아오 빨리보고싶다 ㅠㅠ
진정하시고 쫌만 기다리셔요~