N축 [2026 수능특강 미적분]
아톰의 Docs지식 거래소에 있는 랑데뷰TacTioc-N축 링크 주소입니다. [e-book이 아니라 pdf 판매처네요]
링크주소를 남겼는데 이상하게 변해서 지웠습니다.
컴으로 접속하셨으면 왼쪽 메뉴에 아톰=>아톰 책으로 들어가셔서 TacTic 검색하시면 찾을 수 있을 겁니다!
랑데뷰 TacTic의 N축의 첫페이지입니다.
모든 함수는 우리가 아는 합성함수꼴로 표현할 수 있습니다.
N축은 스킬이라기보다는 심화개념입니다.
N축의 개념 안에서도 여러 스킬이 존재합니다. 랑데뷰 TacTic-N축 에 그런 스킬까지 담아뒀습니다.
그런 스킬까지 알 필요는 없을 거 같습니다만 N축의 개념[그래프 그리고 유추하는 방법]은 고득점을 노리는 미적분 선택자에게는 필수사항이라고 생각합니다. 합성함수 그래프 그리는 거니깐요
그런데 그 방법을 익히더라도 잘 써 먹지를 못하는게 문제입니다.
문제에서 합성함수가 대 놓고 주어지면 "N축 써야지" 라고 생각하는게 아니라 "N축 쓸 수 있도록 문제를 각색해야지"가 되어야 합니다.
그래서 " 모든 함수는 합성함수로 표현할 수 있다!"를 인지하는게 가장 중요합니다.
위 글 중 ③번 240628
에서 조건 (가)의 우변도 합성함수로 표현할 수 있어야 합니다.
m(x)=ax^3 e^(1-x^2)+b
n(x)=cospix
라 하면 (가)의 우변은 m(n(x)) 입니다. [랑데뷰 TaxTic-N축 : 내용 중 일부]
이렇듯 우선 문제를 바라보는 시각을 조금만 연습한다면 N축으로 해결되는 문제들이 정말 많습니다.
[이 연습을 할 수 있도록 자주 글 남기도록 하겠습니다!]
예를 들어
올해 수능특강 미적분 5강 level3 3번 문제의 N축 풀이입니다.
같은 페이지의 1번입니다. 첫 풀이 그대로 적은 메모라서 지저분합니다.
작년 수능 30번입니다.
감사합니다.
랑데뷰 N제 쉬사준킬 킬러극킬
랑데뷰 기출과변형
판매중입니다~~~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
별건없고 제 세계정복의 동료가 되어주시면 됩니다
-
ㅎㅇ 4
-
감히??
-
원하는 스펙 돈 100억잇어야댐 쿨뷰티미녀여야댐 내가집밖에안나가도뭐라고안해야댐 내...
-
이 문제 정답률이 이거 밖에 안된다고? 싶은게 많음 근데 공통 보면 공부 시간을 다...
-
어렵다어려워
-
흠 2
https://hexa-test.me/
-
발표를왤케안함 3
-
평소에 하던 볼륨인데 토할거같애
-
물1 48 (만표 '66') 화1 48 (봐줬다...) 생1 47 (과탐의 마지막...
-
옯만추는 34
가끔은 할만 한 것 같아요 지역이 같거나 학교가 같으면 시간 내서 밥약할만 해요...
-
정보의 본질에 관하여 20.11 베이즈 주의 “연속적 이항대립과 불연속적 이항대립”...
-
서럽다 서러워...
-
11-15라인 조금만 더 어렵게해주지 특히 11번 12번 13번은 너무 했음 14번...
-
초딩때 인기 많았는데 이거
-
공인영어시험(토익 토플 아이엘츠)으로 대체하면 안되나 굳이 영어를 영역으로 만드는...
-
진짜 누구 듣지? 일단 현우진은 너무 무겁다는 느낌이 들긴했음 근데하도...
-
난 이제 장발이야
-
피부과시술 + 얼굴형관리 먼저해보셈 다이어트랑 남녀공통 저거 다 조지면 길가다 돌아볼정도 가능
-
발표를 도대체가 왜 안하는거야 ㅅㅂ 엑셀 클릭한번이면 되는걸 사람 피말리게
-
개나줘라 병신아 걍 우선 실모배틀 이길 실력부터 만들고 예의를 쳐따져야지 난...
-
아마존에서 시켜서 까먹고 있었는데 이런게 행복이구나 너무 멀리서만 보고 있었나뵈용
-
전북치 0
8명 뽑고 예비번호 19번인데 합격 가능?? 진학사 보니까 꽤 돌거 같긴 하던데
-
T1전 쇼메의 아리정도는 보여줘야한다
-
인생리롤 ㄱㄱㄱㄱㄱ
-
둘 중 누구로 살고 싶으세요?
-
미사카 미코토 9
-
반에서 가장 싫어하는 여자애와 결혼하게 되었다. 이 작품이요 라프텔에서 많이 보는...
-
1. 도형문제 난이도 하락 (230913급은 안나올듯) 2. 수2킬러삭제...
-
심심하니까 질문받아봄 12
아무거나 물어보세요 학습부터 오늘 밤 반찬 추천까지
-
그런걸지도
-
안녕하세요, 수능 국어를 가르치고 있는 쑥과마늘입니다. 지금이 아니면 써볼 일이...
-
실모를안풀어봤거든...
-
-수염 레이저 제모 (여성분들은 겨드랑이 등) 면도 귀찮음 해방은 덤이고......
-
95점받음
-
통학할때 이어폰필수일거같은데
-
반가워
-
사탐런 고민중인데 자세히 알려주실 분 구해요..
-
600~700이상이네 왜 이런거지
-
문과로 바꿈. 이번 설때 커밍아웃했는데 난리 났다 나랑 동갑인 애는 메디컬 간다는데..
-
독서도 연계체감 있나요?
-
낙태 반대하시는분들은 그렇게생각하시는건가여 아님 원치않는 임신 제외?
-
보여드림
-
쿠팡에서 사려했는데 몰라서 ㅠ
-
아니 여긴 돈까스밖에 안 팖? ㅅㅂ
-
질문 15
안받습니다
-
속이 안 좋다
수특3번 풀이
3번에서
y=|f(x)+1|과 y=0이 만나는 점의 개수가 1입니다.
오타네요.