생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
만들고 싶은 이유가 뭐에요? 다들 여자친구 생기고싶다 그러는데 이유는 뭔지
-
76시간인데 적은편인가요
-
현우진 수강생인데 뉴런 들으면서 빨간색 마더텅 했어서 그냥 수분감 안해도 되나요?
-
점공에는 빠질 사람 없다고 들었는데 미점공자중에는 없으려나요
-
근데 진짜 옯만추를 하나요
-
덕코 구걸 0
거지에게 적선을..
-
우진이가 1~19 25분컷 못하면 시발점이라는대 ㄹㅇ인가 2뜨면 뉴런하해도대지 안나요.
-
???
-
분모에 절댓값 있거 없고가 뭔차이에요?
-
감튀가 쓰레기급으로 맛없다 그냥
-
밝아졌죠?
-
2세트초반=티원이압도 2세트중반=7대1상황에서 젠지가한타이김 2세트젠지승 3세트...
-
1. 걸어두기만 하고 재수할 생각인데, 1학기 학고 2학기 휴학 가능한가요? 2....
-
책오면 달려야지..
-
근데 지금 당장은 스매쉬가 구마유시보다 나은 원딜임
-
3실수틀 7까먹틀 9또틀 17또틀 18어렵틀 20어렵틀 나 42점 어캐맞았냐?
-
자사고 출신이라 자기주도학습은 1년동안 죽어라 해온 전적이 있습니다 고3때 평균...
-
서폿이 중요하다니까? 18
지금 젠지를 보셈 개개인 체급은 좋기로 유명하잖음 딮기도 이랬어요 이 코인 오래타면...
-
거의 다 끝나가서 고2 3모 풀려볼 생각인데 제발 4만 떠줘라 ... 60점이상만...
-
좀 더 지켜봐야겠지만 오늘폼 진짜 별로네
-
에휴 1
-
종합으로 수의대 쓴다고 가정하면 어떤게 더 합격가능성이 높음? 전제조건은 종합전형,...
-
그리 걱정하지마셔요 95프로는 생기더라고요! 걱정마셔요 여러분
-
이거 퇴학됨??
-
ㅈㄱㄴ
-
참... 불안불안
-
수특 오류 뭐임 2
이번 수특 수1 오류 많은거 같네요
-
어떻게 해야할까요
-
사탐런을 해도 2
지1은 안전하다는 사실 흐하하
-
'전공의 입대' 훈령개정에 의료계 잇단 반발…"철회해야" 1
[서울=뉴시스] 백영미 기자 = 전공의의 군 입대 시기를 국방부가 임의로 정할 수...
-
어느대학 몇명붙었는지 확인할수 있는 기능 있지 않았나요? 그거 어디서 확인해요?
-
생2 25수능 하디 해설 (근수능즁에서 제일 할만한 난이도) 0
편의상 A' B'은 각각 a b로 쓰도록 할게요 1) 4번째 조건을 보시고 ㄱ이...
-
나쁘지 않은거 같네요
-
N축 쓰는사람? 5
평가원문제 풀면서 n축 실제로 써본적 있으신분? 있으면 그 문제좀 알려주실 수 있나요??
-
현우진 가리기 5
현우진 가리기 하는데 0이 되는 인수가 많으면 어케 해야댐? (x-1)에 5승 같은 것들
-
그치만 공부를 잘하는건 어렵다
-
흠
-
흐무흐무흐무무
-
과탐 사탐 4
고2까지 자연계이다가 요번에 인문계로 넘어온 고3 학생입니다… 생명 지구에서 생윤...
-
상세 해설은 지문의 모든 부분을 완벽히 알 수 있게끔 해드리고 사고 교정까지...
-
재수생 사탐런 4
작년 수능 생지 3,4 받고 올해 사탐하려하는데 사문은 고정이고 하나ㄱㅏ 고민입니다...
-
내 미천한 수학실력이 하지말라함
-
뒷페 존나어려운거맞네 지금 36 수능 37 근데 지금기준으로 6점은 실수땜에...
-
결혼도 일찍하고싶다 오손도손 행복하게살고싶구나
-
ㅋㅋㅋㅋ
-
그냥 종합대학 사범대 가도 되는 거 아님?
-
이제부터~ 웃음기 사라질꼬야~ 죄송합니다
-
전하고 비슷하거나 살짝 올랐네 경인교대 어디감?
-
Motivation: "그들의 대화" 에서 최근에 나오는 핵심 용어들 중 하나가...
-
공시 3등급정도? 상위 20프로 정도로 공부하더ㄴ 언니가 대학은 제일잘감...
투과목 칼럼은 개추