[수학칼럼] 정보의 용도 파악
수학은 현장감이 의외로 큰 과목입니다
그렇기에 저는 어떠한 상황에서도 당황하지 않고 문제를 풀수 있기위한
원칙이 존재해야 한다고 생각하고 그것이
어떤 상황에 있든 정보의 용도를 가장먼저
파악하는 것입니다
일단 240613으로 적용해보도록 하죠
먼저 문제에서 주어진 정보를 정리하도록 하죠
1.BC와 CD길이
2.각BCD의 코사인 값
3.원지름의 비율
4.P1P2와 Q1Q2의 길이의 비
5.삼각형 ABD의 넓이
이제 문제를 풀기전에 먼저 계획을 해야 합니다
이는 문제에 대한 대강 틀을 잡는 걸로
각 정보들이 어떤식으로 사용될지를 예측하는 겁니다
1) 1번과 2번 정보는 변 BD에 대한 정보를 알려줍니다
2) 원에 내접하는 삼각형이라는 부분에서 3번과 4번은
각 BAD에 대한 정보를 도출해줍니다
3) 각 BAD에 대한 정보가 있다면 삼각형의 넓이(5번)를 알기에 사인 넓이 공식으로 AB와 AD에 대한 식 하나를 먼저 세울수 있을 것입니다
4) 변BD, 각BAD를 알기에 BD, AB, AD에 대한 코사인 법칙으로AB, AD에 대한 식을 추가로 세울수 있습니다
우리가 알고자 하는것은 AB,AD 식 개수는 2개
식개수=미지수 개수 이기에 1) - 4) 까지의 계산만
해주시면 되기에 나머지는 그냥 계산만 해주시면 됩니다
251127입니다
이 발문에서 정보는 총 3가지가 있습니다
1.접선이 x축인것으로 g(×)에 대한 정보 2가지
2.역함수를 지니는 점에서 정보 1가지
이 정보들의 용도는 명확합니다
오직 f(x)를 확정시키는 용도입니다
f(x)의 최고차항에 대한 정보를 주었기에
f(x)에 남은 미지수는 3가지
식개수=미지수개수
나머지는 계산만 하면 됩니다
250629입니다
구해야 하는 미지수는 3개
a,b,c
하지만 바로 보이는 정보는 없습니다
정보가 보이지않다면 찾아내야죠
g(x)가 실수전체에서 미분가능하답니다
일단 f(x)를 미분해보죠
미분하니 증가함수, 0과 1에서만 변곡점을 지닙니다
근데 g(x)는 x<b일 때 -f(x-c)가 됩니다
미분가능성을 생각해보죠
미분가능: 도함수연속, 원함수연속
원함수가 연속가능하다는 정보는 a값 특정이 목적입니다
b값과 c값은 도함수 연속조건을 통해 특정해야합니다
우리는 f(x)가 항상 증가, 변곡점은 0과1이라는
정보를 알고 있습니다
f(x)가 항상증가 한다는 정보는
f'(x)=-f'(x-c)를 만족하는 f'(x)값이 0임을 알려줍니다
이를 알아내면 b=c=1는 쉽게 나옵니다
이후 원함수 연속조건으로 a값만 계산하시면 됩니다
이렇듯 모든 문제에서 정보는
확실한 목적을 지니고 있습니다
또한 세번째 문제처럼 그것이 직접적으로 제시된것이
아닐수도 있습니다
하지만 만약 정보를 알게된다면
그정보의 목적이 무엇인지 부터 알아내야 합니다
그이후는 확신을 가지고 계산을 하면 됩니다
이상입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐지 나 왜 잘못알고있었지
-
성대 사과 예측 8
217명 뽑음, 진학사 점공 현재 644.30까지 최초합격(166등) , 본인...
-
재종은 너무 비싸기도 하고 (월 3~400 이라고 들음) 매일 통학하기도...
-
매체틀만 안했어도 듣기만 안틀렸어도 영어때 샤프고장만 안났어도 지학 동서방향 반대로만 안읽었어도
-
연대기원 0
연대연대
-
그리고!!! 저보다 높은 점수대 분들은 1, 2지망 합격하셨으면 좋겠습니다 ㅎㅎㅎ
-
이번에 나, 다군 떨어지고 경희대 경영학과 갈거 같은데요.. 경희대는 반수...
-
내 위에 다 스나갈김 ㅋㅋ
-
21번 27번 빠르게 버린 덕이겠지 덕분에 원점수 77 -> 85
-
문자 받고도 며칠 내에 안 오면 허수...겠죠?
-
제 식견으로 요즘 보면 지금 사회초년생은 취업 자체도 힘들지만 적응도 힘들고...
-
벌써 조회수 500만이네
-
연행정 연언홍영 2
점공 근황 궁금해요. 지금도 핵빵인가요?
-
고대로 보내줘 ㅠㅠ
-
올라가서는 평범하긴 한데 학교 들어가는 길이 대박임 논술보러 갔다가 진짜...
-
점공만 보면 역대급이라 언급많아야하지만ㅋㅋ 주위 의대권애들 10명정도 한테 들은건데...
-
"환자·의사 고통은 뒷전? 한의사들의 음흉한 정치질 논란" 49
"안녕하세요. 한국암환자권익협의회입니다. 저희는 대한한의사협회 의뢰로 '의료정책...
-
며칠전에 스크린샷 찍어놓은거랑 오늘이랑 비교해보니까 성적 인증까지 해놓은 점공 표본...
-
하….
-
카톡돌린거였냐
-
뭐드시나용
-
이게 원래대로면 [읽고 푼다]<<이걸 무한반복하는건데 이 과정을 잘 풀어서 남한테...
-
폭난 것 같아 아무래도 ㅠㅠ
-
ㅇㅇ
-
뽀뽀해주고싶네
-
원래 오래걸려요? 내껀 왜 조회 안된다고 문자왔다가 다음날 왔다고 다시 문자왔지
-
국어 커넥톰/온톨로지 - 커넥톰은 분석서고 온톨로지는 배경지식으로 알고 있으면 좋은...
-
대학원도 생각중이긴 한데.. 문과는 아무리 봐도 취직에 답이 없다
-
작년에 추합 30명 넘게 돈과가 올해 점공 상으로 등록 안할 사람 지워보니까...
-
이라고 할 수 있으면 얼마나 좋을까
-
가군에 제 앞 사람이 성글경 647점대인데 이 사람 빠질 수 있을려나요
-
첫 풀이 2000덕 드리겠습니다! (+ 자작 아닙니당)
-
설사범 점공 3
제 앞에 두명빼고 전부 미인증이던데 정시면접이라 혹시 허수 가능성이 있을까요?
-
네 관리자님?
-
보통 정말 큰 펑크는 거의 다 사회과학 라인에서 발생했는데 왜 사회과학 라인에서...
-
다군 상위권 대학 충원율 대략 어느 정도 예상하시나요? 0
올해 정시 정원과 경쟁율인데요....(수시이월은 된 것도 있고, 안된 것도...
-
내신 버리고 정시간다 기하가 쉽다 vs 미적이 쉽다로 토론하고 있는데 좀 웃기네요
-
연대는 합격하면 집에 뭐 오나요
-
안녕하세요 올해 고3으로 진학하는 학생입니다! 그간 모고를 준비하고 본 적은 없어서...
-
걍 듣고 싶은 사람 들어두 될 정도로 큰 차이 없나요?? 문학은 강민철 들을거에요 !!
-
솔직히 가망없는거 아는데 포기가 쉽지않음...
-
하... 리스크가 큰데 굳이 험한 길을 가야 할까? 그래도 치고싶다...
-
부산대 합격생을 위한 노크선배 꿀팁 [부산대 25학번] 0
대학커뮤니티 노크에서 선발한 부산대 선배가 오르비에 있는 예비 부산대학생, 부산대...
-
22학년도 핵빵 : 가톨릭대(한양공) 빵 : 중앙대, 서울대, 아주대, 연세대 약대...
-
이정도면 들어올 사람 다 들어온것이 아닐까 라고 합리화중
-
영어 시범과외인데 일단 25수능에서 몇문제 가져가려고 해요 유형별로 가져가서 어디가...
-
점공 계산기 이거 10
서성한 라인 밑이면 나오는 예비보다 더 앞번호 일 수 있다는 말인거죠? 희망회로 on
-
[칼럼] 비문학과 탐구 영역_자료 해석/퍼즐형에 관한 10
안녕하세요. 퍼런입니다. 지문 분석은 자료 제작할 때 많이 하니.. 오르비에 쓰는...
-
날수도 있죠?... 근데 그렁 가능성이 낮겠죠? ㅋㅋㅋ 펑크는 대부분 한번이상...
닉네임부터 바꾸셈
선ㄱㅐ추ㅋㅋ
당신뭐야
흠 만족스렂군
너누구야
계정 해킹당함?
님?
맞말
경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이!
ㅏ랑햐요
그건 좀...
존나멋있다ㄹㅇ
그냥 고능부엉이가 맞다
대고능부엉
고능아네 ㄱㅁ
와 고트부엉이
고능부엉이 ㄹㅈㄷㄱㅁㅊㄷ
간단하지만 정말 알찬 칼럼이네요. 따봉
와 뭐고 이게
일단 스크랩