수학질문 ㅔㅜㅠ
왜 f''(x)가 0보다 크거나 같은건가요 그냥 큰거라고 하면 왜안되나요ㅠㅠ? 어떨때 등호가 들어가는건지모르겠어료
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
볼캡 사려고 하는데 몇개가 적당할까 한개는 있구 2개 살지 3개 살지가 고민임요
-
재수하면서 걸어둔 학교로 돈벌기 ㅎㅎ
-
수성 트럼프 월드 살면ㅅㅌㅊ인거임뇨?
-
행복하길 바래 9
에서 바래는 틀린 표현이며 바라가 와야 표현이 맞습니다 네 밥 묵으러 갑니다 ㅎ.ㅎ
-
T1) 2025 LCK CUP에도 T1 ZONE에서 함께 응원해요! 1
출처) T1 Instagram @t1lol
-
수능은 미적인데 확통은 내신땜시 챙겨야함니다 수(하)에서 특히 경우의수나 순열조합은...
-
성적 몇 점대까지 뚫릴 거라고 보시나요? 생명과학부, 생명공학부, 화공생명공 진학사...
-
왕 0
시작
-
수능 만점 받기
-
23입시 때 05조졸러들은 꽤 봤는데 24입시 때 06조졸러는 아마도 못본거같고...
-
수학,영어 올해 해야하는것 탐구고정1-2후만들기
-
ㅈ됐다 0
또 아직 한끼도 안 먹었어
-
영어 인강 추천 1
영어 인강 추천 해주세요. 작년 기준 6평 3 9평 2 수능 3 입니다. 원래...
-
아 0
자버렸다 공부 안해
-
내가 하는 건 ㅈ노잼이었는데 남들꺼 보는건 개꿀잼이에요 이러다 26 27 입시도 관전할수도
-
지혁쌤갔는데 강사 안뽑으려나
-
안들어오니까 괜히 기대하게되잖음 안될건 앎..
-
이미 재종담임한테는 합격증 다 넘겼는데 특정과목쌤이 자꾸 연락오심 답장안했는데 연락...
-
.
-
지금 고 3인데 시발점 수 1 은 끝내고 수 2 듣고있어요 노베 공통수학 풀으라고...
-
완전군장 괜히 함 13
아직도 허리가 아프다 발목도.. 발바닥도..
-
아시발 4
지금까지 지퍼 내리고 밖에 돌아다녓네
-
원서영역 9등급
-
궁금해졌음
-
왜 기하고르고 물2지2를안함?
-
problem 제조기
-
하위 6
-
일찍 일어나서 6시에 돌아와야지 1시에 일어나다니;
-
T1 담원보다 더 재밌을수도? 쵸비야 배신자 우제를 이겨줘
-
시발점 한 바퀴 다 돌리고 이건 아니다 싶어서 ㅌㅌ함
-
team 05이고 작수 결과 언미물지 31333 미적 1등급이 아까워서라도 한 번...
-
중전전 중솦 사이?
-
센츄라도 빨리 왔으면
-
ㅈㄱㄴ
-
확통런 0
미적이 너무 어려운데 고1때 조합에서 애먹었어서 확통런 해야할지 고민돼요 미적 책도 사놨는데..
-
T1) 2025 LCK CUP T1 Fan Meet Notice 1
출처) T1 X @T1LoL
-
좀 하자 어엉어ㅓ??????
-
231122 2
순수 난이도 goat임 개인적으로 해설 들어도 모르겟음
-
뀨뀨 15
뀨우
-
그래야 오르비 메타에 야무지게 참전을 할 수 있을텐데
-
23재림이 좋은이유 10
애초에 23수능 나쁘지않게봄
-
단지 점수 높은게 생각보다 의미가 없는게 문제임
-
어지러움 0
쉽지 않네
-
제가 항상 문학-특히 고전소설에서 말려서 시간이 부족한 경우가 많습니다 반면 독서...
-
블랙박스, 충돌 4분 전부터 기록 정지…전문가 "셧다운 가능성"(종합) 4
항철위, 美 NTSB 교차검증 거쳐 발표…'메이데이' 선언 무렵부터 끊겨 조사 기간...
-
엔수는 에피 어캐따노 12
더프 평가원 에피는 너무 무서워ㅠㅠ
-
ㅈㄱㄴ
-
보통 생윤 개념 임정환쌤 추천하던데 가뜩이나 낯선 용어들이 많이 나오는데도 좀...
-
나 눈치없어서 돌려말하면 못알아들음..
-
좋을까요? 소수과라 한 학년당 16명 밖에 안 돼서 눈에 띄면 안 될 거 같은데..
y=x^3도 실수 전체 집합에서 증가한다는 거랑 비슷한 맥락이라고 보시면 돼요
그것도 생각해봤는데 잘 모르겠어요ㅠㅠ 2x^2은 이해가 가는데 저런 식은 어떻게 알수있는건가툐?
증가함수도 f'>=0인거랑 같습니당
근데 그러면 그냥 위로볼록 아래로볼록 할때는 왜 =이 안붙는건가요?
아래로 볼록하다면 f">=0이다.
f">0이면 아래로 볼록하다.
제 생각엔 명제 공부를 하셔야될듯
이계도함수가 y=x^2인걸로 놓고 그려보세요
근데 그냥 위로볼록한거 할때는 f"(x)<0 이렇게 했는데 저 문제는 실수 전체여서 =도 붙는건가요?
f(x)=x^4을 생각해보면, x=0에서 이계도함수값이 0이지만, 전체 그래프는 아래로 볼록합니다.
0이 추가된 이유를 한마디로 표현하자면, 특정지점에서 이계도함수값이 0이어도, 주변에서 0보다 크다면 아래로 볼록하다는 성질이 유지되기 때문입니다.
이계도함수의 값이 쭉 0이 되는 구간이 발생하지 않는다면(이때는 직선이겠죠?),
어차피 0이상이라고 했을 때 0이 되는 지점들은 이산적으로 분포될거고, 그 이외의 지점에서는 항상 양수일거라 저렇게 표현하는 것이 옳은 것이죠
그러면 그냥 위로볼록 아래로 볼록 구할때는 이계도함수 값이 >0,<0 이렇게만 붙고 =이 왜 안붙는건가요? 이제 =이 붙는건 이해가 가는데 그냥 위로볼록 아래로볼록 할때는 =이 붙으면 안되는질.ㄹ 모르겜ㅅ더요
이계도함수가 모든 정의약에 대해 쭉 0이면 직선이 되는 반례가 생겨서 그런거같아요..!
=이 안붙는다고 하신 것이 정확히 어느 부분에서 나온 것인지 모르겠으나, 제 생각엔 아마
'f"(x)>0이면 그래프가 아래로 볼록이다'
라는 명제를 보고 그리 얘기하신 듯 합니다.
'p이면 q이다' 참이라고 해도, 'q이면 p이다'는 거짓일 수 있듯이, 위의 명제는 참이어도
'그래프가 아래로 볼록하면 이계도함수가 양수이다'
는 거짓입니다. 정확히는 0이상이어야하는거죠.
아마 학생께서
'f"(x)>0이면 그래프가 아래로 볼록이다'
라는 참인 명제를 학습하시고,
f"(x)>0과 그래프가 아래로 볼록한 것은 동치라고 오해하신 듯 합니다.
이거맞나요?
넵 맞습니다
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
간단하게
아래로볼록이면 f''>0 -> X
아래로볼록이면 f''>=0. -> O
f''>0이면 아래로볼록 -> O
f''>=0이면 아래로볼록 -> X
다른 이야기긴 하지만
f''>=10이면 아래로 볼록이다.
이것도 맞는 명제입니다
헷갈리시나요?
네 모르게ㅛ어요ㅠㅠ