쉽고 재밋고 개 유명한 문제 (2)
파티에 사람들이 있다.
이 사람들중에 임의의 2명은 악수를 하거나 하지 않았다. (여러번도 알빠 없음)
이때 각 사람마다의 악수 횟수를 모두 더한 값은 짝수임을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
시험기간이라서 못봄
-
3수박고 3뜬 인생ㅈ망허수는 다시 나가봄..
-
닉변마렵네 2
걍 아무생각 없이 지었는데 슬슬 쪽팔림
-
팥붕이라니 17
전 팥 자체를 안 먹슴뇨 송편도 깨송편만 취급함.
-
기차지나간당 6
열차 운행의 중요한 과제는 열차를 신속하게 운행하면서도 열차끼리의 충돌 사고를...
-
붕어빵은 팥붕이지... 33
-
아직보는중 호리미야도 같이 보느라
-
참고로 게이는 절대 아님 그냥 궁금함
-
지구 1컷 여론 22
42 -> 44 -> 43 왜 이런 식으로 바뀌는 거 같지... 42인데 꼭 1...
-
마누라도바꿔서 ㅋㅋㅋㅋㅅㅂ 존나웃기네 ㅋㅋ
-
둘 다 들어본 사람 있으면 장단점좀 알려주세요
-
마크가 문제임 근데 1화부터 살짝 하드하던데..ㄷㄷ
-
옵만추할 사람 구합니다 36
만나기전에혈핵형만알려주세요 되도록이면음주안좋아하시는분이면좋겠어요
-
자러감뇨 3
지금 자면 한 11시에 깰거같음뇨. 개인적인 희망사항으로 2시까지 잠들어 잇을 수 잇다면 좋겟음요
-
화작 2개틀에 9번문제 어휘임뇨 수능장에서 뭔짓을한건지 진짜 살자 개마려움뇨..
-
그냥 잘칠 거라는 미련을 버리고 봐야되는 건 아는데 0
그래야 진짜 마음 편하게 보는 건가 흠 아무튼 이제 언매 이 ㅆㅅㄲ<~버리고 화작...
-
대화에 못 끼겟어서 자러감뇨
-
다풀고 시간 20분남기고 15분동안 44번만 고민하다가 다행히 고쳐서 맞춤
-
씹덕) 급함 34
아부지가 내가 군대갔을때 이사갈수도 있다고 하는데 요거 미리 포장해놓는게 났겠지?
-
그냥 오르비에서 들어서 아는거
-
제 최애는 6
1등은 호시노 아이고 2등은 아카네임뇨 이유는 이쁨뇨
-
저거 마지막껀 이투스인가? 더프도 거의 대부분 서울대 스카이 나오거나 못보면 서성한...
-
일단 카나 싸대기 없애고 아쿠아가 사실 유서를 써놓는 거임 하늘에서 지켜볼테니...
-
진짜 잘껀데 0
저 잠 들때까지 글 쓰는것좀 멈춰보셈뇨
-
재수 평가 좀 2
작년 평백 77 이었는데 이번엔 86나옴 많이 별론가..? 난 그래도 많이 올라서...
-
8칸 추합 7
입시하면서 8칸 추합 처음봄 ㅋㅋ 개신기하네
-
최애의 아이 9
최악의 결말 1위 나히아가 장례식에서 부활해서 부동의 1위 등극
-
결혼생각은 4
2%정도 잇고, 자식 낳을 생각은 0% 정도 잇음뇨
-
정시 학종 영향 1
내년도 부턴 한양대에도 학종10%가 추가되는데 이러면 학종의 영향이 얼마나 미치나요?
-
이과생들 왠만하면 사문으로 런칠텐데 이럼 등급따기 다른사탐에 비해 빡셀듯
-
수1 수2 뉴런+수분감 미적 시발점 +쎈 할건데 하루에 8시간 정도 수학 한다고...
-
정시컨설팅 0
Ida 정시 컨설팅 받아보신 분 계신가요….. 후기가 없어서 모르겠어요….살려주세요…….
-
중학교 3-2 중간고사 평균 98.1로 전교 2등한거랑 고3 10모 국수탐...
-
반박 안 받음
-
왜냐면 그럼 난 면제나 공익이니까..
-
아묻따 생윤사문이 맞나요
-
에라 모르겠다 0
낙지 실지원 987칸으로 박아놔야지 ㅋㅋ
-
학교 선생이 주제 같은거 ㅂㅅ 같이 잡아놔도 그거라고 따라가야 함 ㅈ 같네 ㅋㅋㅋㅋ
-
반박시팥첩
-
국어 유기하고 수학만 파는거 어떻게 생각하시나요?? 영어 간간히 하고
-
군대 + 학부 + 석박사 존나 빠르게 딴다쳐도 8~9년임뇨
-
기원합니다
-
서성한 갈 수 있나요 15
중앙대 공대나 서성한 이과 아무데나 가고 싶어요 특히 한양대ㅠ 영어도 3이고 국어랑...
-
어차피 나 죽으면 이세상은 다 끝나는거라고 생각함 그리고 내 한 몸 부지하기도...
-
ㄹㅇ
-
오늘 용잡고 겉날개 5개 얻음
-
일단 키가 2컷이니 얼굴 6등급이라고 치고 4등급 맞는듯뇨
보여줄게 완전히 달라진 나
악수할때마다 총 카운트가 2씩 올라가니깐 무저건 짝수 아님뇨?
맞음뇨 ㅋㅋ
에잇 재미없엇네 ㅋㅋ
이런 ㅅㅂㅋㅋㅋ
파티에 있는 사람들의 수를 n이라고 하고, 각 사람을 p1, p2, ..., pn이라고 부르겠습니다. 각 사람 pi의 악수 횟수를 di라고 하겠습니다. 이때 우리가 증명해야 할 것은 d1 + d2 + ... + dn이 짝수라는 것입니다.
악수는 두 사람 사이에서 이루어지므로, 모든 악수는 두 사람의 악수 횟수에 각각 1씩 더해집니다. 즉, 악수가 한 번 일어날 때마다 악수 횟수의 총합은 2가 증가합니다.
예를 들어, p1과 p2가 악수를 했다면 d1과 d2가 각각 1씩 증가하므로 d1 + d2 + ... + dn은 2가 증가합니다. p1과 p3가 악수를 했다면 d1과 d3가 각각 1씩 증가하므로 d1 + d2 + ... + dn은 2가 증가합니다.
이런 식으로 모든 악수에 대해 악수 횟수의 총합은 2씩 증가하므로, 악수 횟수의 총합은 항상 짝수가 됩니다.
따라서 각 사람마다의 악수 횟수를 모두 더한 값은 짝수입니다.
좀 더 수학적으로 표현하면, 악수 횟수의 총합은 다음과 같이 나타낼 수 있습니다.
Σ di (i=1부터 n까지)
각 악수는 두 사람의 악수 횟수를 1씩 증가시키므로, 모든 악수에 대해 이 합은 2의 배수가 됩니다. 따라서 악수 횟수의 총합은 짝수입니다.
뭣
di라니 그래프이론을 아시는 분이신감 ㅎㅎ
53초전이면 합리적 의심으로 gpt
땡
그런거구나
사실 구글 ai인 Gemini한테 시켰어요 ㅋㅋ
ㄷㄷ
쌤쌤이로 할거임뇨
한 번의 악수는 악수 횟수의 총합에서 2명당 1번씩 카운트되어 2번으로 치환되기 때문에 악수가 몇 번 이루어지더라도 짝수일 수밖에 없음
확통교과서에 나오지않나
근가