물리학 1 18번, 20번 문항 풀이
본 게시글의 풀이는 2018, 2024 피직솔루션 내 비례식 원리를 따릅니다.
역학적 에너지 문항인데 저같은 경우에는 운동에너지, 위치에너지들을 비율로 나타내고
이 때 작성된 비례식 끼리의 비례 상수를 맞추는것을 좋아합니다.
비례 상수를 맞추기 위해 곱해주어야 하는 상수 k를 구해지는 방향으로 시선이 좁혀지다보니
무엇을 해야할 지 명확해지기 때문입니다.
간혹, 발문을 수식으로 표현했을 때 문항이 풀리지 않을 경우에는
문항 내에서 s=vt 꼴로 숨어있는 조건이 있는지 체크하기를 권장합니다.
대다수는 s=vt와 W=Fs를 분리된 유형으로 약간 본능처럼(?)느끼는데
그래서 에너지 문항이라는 생각을 하고 s=vt를 떠올리지 않는 경우 구렁텅이로 빠지는 경우가 많은것같습니다.
물체의 처음 위치와 최종 위치에서의 속력은 1:1이므로
운동에너지는 1:1입니다.
높이는 3:1이므로 퍼텐셜 에너지는 3:1이될것입니다.
그리고 물체가 마찰 구간 I, II에서 손실한 운동 에너지는 1:1로 동일하며
이 값은 q에서의 운동에너지의 2/3배이므로 문항에서 주어진 조건을 정리하면 다음과 같습니다.
처음, 나중 운동 에너지 = 1:1 (1)
처음, 나중 위치 에너지 = 3:1 (2)
손실 운동 에너지 = 2:2, q에서의 운동에너지 = 3 (3)
문항 내에서 주어진 조건을 정리해보니 위 세 비례식간의 비례상수를 맞춰주는것이 본 문항의 방향성인듯합니다.
비례식 (1), (2), (3)은 각각의 비례상수가 다르기 때문에 편의상 (3)을 기준으로 (1)과 (2)를 맞춰볼것입니다.
(3)에 의해 p에서의 운동에너지는 5이고 이는 손실량 2이 발생한 이후이므로
처음 역학적 에너지는 7, 나중 역학적 에너지는 3입니다.
처음, 나중 운동 에너지 = 1:1 (1)
처음, 나중 위치 에너지 = 3:1 (2)
(1)과 (2)를 조절하여 세로 합이 7, 3이 되어야하며(비례상수 일치)
각각 1, 2 를 곱해주면 됩니다. 따라서 정리하면 다음과 같습니다.
처음, 나중 운동 에너지 = 1:1
처음, 나중 위치 에너지 = 6:2
손실 운동 에너지 = 2:2, q에서의 운동에너지 = 3
마지막 지점의 에너지로 인하여 0.5mvv=mgh=1 입니다.
ㄱ. p에서 손실된 운동에너지 = 중력과 같은 크기의 힘이 한 일의 양 = 2 = mgh 이므로 d=h입니다.
ㄴ. 처음 운동에너지는 1, p에서 운동 에너지는 5이므로 속력은 1:5에 루트를 씌운 1:root5입니다.
ㄷ. I에서의 운동 에너지는 1+2, q에서 운동에너지는 1+2+2-2 으로 동일합니다.
문항내 조건을 문장별로 끊어 조건을 수식화 해봅시다.
발문 1 : q장력과 r장력은 3:2이다.
C가 정지했으니 장력은 각각 3mg, 2mg가 되어야겠습니다.
그러면 p장력도 3mg, A의 빗면 중력도 3mg가 되어야합니다.
발문 2 : r, p를 끊고나서 A, (B+C)의 가속도는 2:1이다 = 알짜힘비/질량비가 2:1이다.
= 3:1/질량비=2:1, 질량비 = 3:2 = 6m : 4m, B는 3m이됩니다.
발문 3 : r이 끊어진 순간부터 B가 O로 돌아오기까지 걸린 시간은 t0이다.
= B의 속력은 가속 운동의 대칭성으로 인하여
r이 끊어진 순간, O, 정지, O 순으로 0 v 0 v입니다.
여기서 포인트는 0-v구간과 v-v구간에서의 가속도 비 = 알짜힘비/질량비 = (2:1)/(10:4)=4:5이며
속도 변화 비는 1:2이므로 걸린 시간비는 (1:2)/(4:5)=5:8로 이 둘의 합이 t0입니다.
p가 끊어진 순간 O에서의 속력은 B의 속력이며
알짜힘 2mg에 의해 10m짜리 질량이 5t0/13 동안 가속된 속력입니다.
따라서 g/5에 5t0/13을 곱해주면 gt0/13이 됩니다.
간단하게 쓰면 알짜힘이 2:1/ 질량이 5:2에서 가속도비 4:5를 구하고
속력 변화가 v로 세번 일어나면 걸린 시간이 5 4 4 합 t0을하고
5/13에 가속도 1/5를 곱하는 방식이겠지만 그건 그래프가 머리속에 쏙쏙 그려지는 숙련자기준이구
정석적인 풀이 과정은 위에 풀어쓴것과 동일할것같습니다.
이런 풀이가 익숙해지면 나중엔 식 안쓰고 상수만 끄적대는 자신을 보게 될거에요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈㄱㄴ 특히 국어
-
ㅈㄱㄴ
-
사람은왜코를골까
-
어문계열정도는 가고싶은데 가능할까요 정법 3 뜨면 아예 불가인가요..
-
숏치고 잔다 1
제발 공매도 성님들 한번만 도와주이소 나한테 뜯어간 돈가지고 공매도 치는거 아니오...
-
언매기하물2경제 15
언매기하물2경제 에반가요? 현역 화작기하물1물2했었고 화작4틀1등급놓침 -> 언매로...
-
지금 메가 대성 31 이투스 29
-
근데 만약 메가 혹은 대성 수학 컷이 맞았을 경우에는 1
왜 그렇게 나오나 생각을 잠깐 해봤는데 전년도와의 가장 큰 차이점은 의대 정원...
-
ㅋㅋㅋㅋ
-
알바 0
추천좀여
-
모두가 88을 외칠때 저는 조용히 84~85로 외치겠습니다. 사실 다른 분들이...
-
작수 가채점 끝난 저녁날, 받아든 가채점 결과는 언미영물지 13323. 목표에 한참...
-
인간 미쳐버리기 만드네 그냥..
-
뭔가 수위좀 있는거 같아서 군대에서 보기 좀 그럴듯
-
사람은 진짜 없는 느낌
-
지금부터 서로 죽여라?
-
뭐냐 에반게리온급이네 ㅅㅂ이
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 3
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
-
여성 인권운동가 아이민 1334714에 대해 araboza 4
우선 해당 아이민을 댓글을 기준으로 검색해보도록 하자 놀랍게도 여대,페미 관련...
-
경희대 논술 0
수리 논술인데 2-1에서 범위를 0<a<2/5까지라해서 틀리고 3-1에서 C값을...
-
수능은 끝났는데 3
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 6
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
-
얘네 지금 볼 필요 없음 그냥 놀아요
-
진학사? 2
다들 진학사 결제 하셨나요…? 아니면 다른 거 쓰시나용 요즘 걱정돼서 잠이 안 옴 ㅎ….
-
전날까지도 자꾸 실모에서 개념문제 하나씩 나가길래 수능날 실수하면 죽겠다는 마인드로...
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
심심한데 0
뭐 질문해줘요
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
-
서강대교 성수대교 한강대교
-
마렵네 :)
-
질병분류체계에 정신병으로 한국페미 집어넣어야한다 반사회적 인격장애와 경계선지능장애가...
-
똥줄타실것같음
-
이과고 연대 활우 성대 과학인재 중대 탐구형인재 썼는데 연대만 1차 붙어서 면접...
-
글 리젠이 없네 0
흑흑
-
미코토 이쁨 3
-
마히루 이쁨 1
-
타이탄 이쁨 4
-
걍 구라일 확률이 매우 높음뇨 커뮤에 치대 떡락한다 의대는 신이다 도배하고 다니던...
-
루비 예쁨! 7
-
종강언제함 5
ㄹㅇ
첫번째 댓글의 주인공이 되어보세요.