재무학 맛보기-옵션 가격과 블랙-숄즈 모형
안녕하세요 독서칼럼에 진심인 타르코프스키입니다.
경영학은 수능 비문학에서 출제하기에 일반적으로 좋은 소재는 아닌 듯 합니다. 특히 재무학 부분은 수리적인 접근이 많이 필요해서, 경영학 내에서도 이과 학문같은 취급을 받기도 합니다. 하지만 방심할 수는 없습니다. 학생들이 낯설어하는 주제이기 때문에 오히려 출제되었을 때의 파괴력은 더 클 것으로 예상해볼 수 있습니다. 실제로 재무학의 위험평가이론, 블랙-숄즈 모형 등은 출제 가능한 주제라고 생각합니다.
이제 서론 읽을 시간도 없습니다.
핸드폰 켠 김에, 옵션가격과 블랙-숄즈 모형을 분석한 아래 재무학 지문을 읽어보세요.
이 글을 완독하면 적어도 12개의 개념어를 얻어갈 수 있습니다.
->
조건부 약속(contingent promises), 재정거래(arbitrage), 행사가격(strike price)
무차익 원칙(principle of no arbitrage), 연속 복리(continuous compounding), 거래 상대방 위험(counterparty risk)
헤지비율(Δ), 위험중립적 가치평가, 이항트리
로그정규분포, 파인만-캑 공식, 두터운 꼬리 현상
(좋아요 누르고 시험운 받아가세요!)
(연습문제 1)
출처: https://www.youtube.com/watch?v=9ScZLjTnYro&t=39s
참조 및 재구성.
|
(연습문제 2)
금융 시장(financial markets)에서 선도 계약(forward contracts)은 미래의 특정 시점과 가격에 자산을 매매하기로 약정하는 구속력 있는 합의로, 그 가격 책정은 무위험 차익 거래가 불가능하다는 무차익 원칙(principle of no arbitrage)에 의해 근본적으로 결정된다. 이론적 선도 가격은 현재의 현물 가격(spot price)을 계약 기간 동안의 보유 비용을 반영하여 조정한 것으로, 무위험 이자율(risk-free interest rate)을 연속 복리로 계산하여 ( F = S e^{rT} )라는 수식으로 표현된다. 이때 ( S)는 현물 가격, ( r )은 연속 복리 무위험 이자율, ( T )는 만기까지의 시간을 나타낸다. 이러한 지수 함수는 복리 빈도가 무한대로 증가할 때 유효 연간 이자율이 지수 함수로 수렴하는 연속 복리(continuous compounding) 개념에서 도출되며, 시간 경과에 따른 이자의 최대 누적 효과를 반영한다. 실제 선도 가격이 이론적 가격과 괴리를 보일 경우 차익 거래 기회가 발생하는데, 선도 가격이 과대평가된 경우 차익 거래자는 캐시앤캐리(cash-and-carry) 전략을 구사할 수 있다. 이는 선도 계약을 매도하고 무위험 이자율로 자금을 차입하여 현물 시장에서 기초 자산을 매수한 후, 만기에 가격 차이로 이익을 실현하는 방식이다. 반대로 선도 가격이 과소평가된 경우, 역(逆) 캐시앤캐리 전략을 활용하여 선도 계약을 매수하고 기초 자산을 공매도하며 그 대금을 무위험 이자율로 투자한 뒤, 만기에 자산을 매입하여 공매도 포지션을 상환함으로써 무위험 이익을 창출할 수 있다. 선도 계약에 내재된 거래 상대방 위험(counterparty risk)을 완화하기 위해 선물 계약(futures contracts)이 발전했는데, 이는 거래소에서 거래되는 표준화된 합의로서 일일 정산(marking to market) 과정을 통해 참여자의 증거금 계좌(margin accounts)를 일일 손익에 따라 조정하여 충분한 담보를 유지하고 과도한 손실의 누적을 방지한다. 계약의 표준화는 규모, 품질 등급, 인도 조건 등을 명확히 함으로써 시장 유동성(liquidity)을 제고한다. 그러나 극심한 시장 변동성은 이러한 안전장치에 도전이 될 수 있는데, 급격하고 큰 폭의 가격 변동은 거래자가 감당하기 어려운 대규모 증거금 납부 요구(margin calls)를 유발하여 시장 안정성을 위협하는 디폴트를 초래할 수 있다. 이에 대응하여 거래소는 거래 중단, 증거금 요건 조정, 거래 취소 등의 조치를 취할 수 있으나, 이는 시장의 완전성(integrity)과 공정성에 대한 우려를 야기할 수 있다. 이러한 복잡한 역학 관계는 강력한 위험 관리 프로토콜에도 불구하고 상품 선물 시장(commodity futures markets)에 내재된 위험성을 부각시키며, 시장의 안정성과 완전성 유지를 위한 철저한 감독과 탄력적인 규제 체계의 중요성을 강조한다. |
<틀린 선택지> |
<틀린 선택지> |
<틀린 선택지> |
<이 글에서 얻어갈 개념 3가지> |
(연습문제 3)
|
(연습문제 4)
블랙-숄즈 공식(Black-Scholes formula)은 옵션 가격 결정(options pricing)에 있어 획기적인 진보를 대변하며, 이항 모델의 연속시간 확장으로 간주된다. 옵션(option)은 투자자들이 위험을 관리할 수 있게 하는 금융 파생상품으로, 미리 정해진 가격에 자산을 매매할 수 있는 권리를 부여한다. 이 공식은 주가가 로그정규분포(log-normal distribution)를 따른다는 핵심 가정에 기반하는데, 이는 주가의 로그값이 음의 무한대에서 양의 무한대까지의 범위를 가질 수 있음을 인식한 결과다. 이러한 수학적 조정을 통해 금융 시장의 실제 역학과 부합하는 가격 변동 모델링이 가능해졌다. 공식의 도출 과정에는 고도의 확률 미분 방정식이 적용되었으며, 특히 물리학에서 차용한 파인만-캑 공식(Feynman-Kac formula)이 중요한 역할을 했다. 블랙과 숄즈는 모델에 내재된 복잡한 방정식을 해결하기 위해 경제학의 경계를 넘어 물리학자들과의 학제간 협력을 추구했다. 이 공식의 복잡성에도 불구하고, 현재 금융계에서는 광범위하게 사용되고 있으며, 트레이더들은 종종 그 기저의 수학적 복잡성을 완전히 파악하지 못한 채로 금융 계산기에 공식을 입력하곤 한다. 블랙-숄즈 모델의 실용적 가치는 이론적 금융을 넘어 다양한 산업 분야에서의 위험 헤지(risk hedging)를 가능케 한다. 예컨대, 항공사들은 연료 비용 안정화를 위해 옵션을 활용하고, 농부들은 작물 가격 변동에 대비해 위험을 헤지함으로써, 위험 부담 능력이 부족한 주체로부터 더 나은 관리 능력을 갖춘 주체로 위험을 이전시킨다. 이러한 메커니즘은 보험의 기본 원리와 유사하게 경제적 안정성을 제공하고 사회 후생에 기여한다. 그러나 이 모델은 수익률의 정규분포를 전제로 하는 반면, 실제 금융 수익률은 흔히 "두터운 꼬리(fat tails)" 현상을 보여 극단적 시장 사건이 모델의 예측보다 더 빈번히 발생함을 시사한다. 이러한 가정의 한계는 블랙-숄즈 모델 설계자들이 운영하던 헤지 펀드인 롱텀 캐피탈 매니지먼트(Long-Term Capital Management)의 붕괴를 통해 여실히 드러났는데, 이는 모델이 고려하지 못한 시장 변칙성으로 인해 실패했다. 블랙-숄즈 공식 이전에는 옵션 가격이 기본 경제 원리에 근거한 상한과 하한을 설정하는 경계 조건(boundary conditions)을 통해 책정되었으며, 이는 정확한 계산 없이 이루어졌다. 이러한 역사적 맥락은 금융 상품의 진화와 위험 관리 도구의 증대되는 정교함을 부각시킨다. 그럼에도 불구하고 금융계에서 "공짜 점심은 없다(no free lunch)"는 원칙은 여전히 유효한데, 이는 시장을 지속적으로 능가하려는 시도가 예측 불가능한 변수와 인간 행동으로 인해 종종 좌절되기 때문이다. 금융 모델의 한계를 인식하는 것은 매우 중요하다. 이러한 모델들이 유용한 프레임워크를 제공하긴 하지만, 현실 세계의 복잡성을 고려하지 않은 채 맹목적으로 의존할 경우 심각한 결과를 초래할 수 있다. 블랙-숄즈 공식은 금융 혁신의 최고점을 상징함과 동시에 시장 현실에 대응한 지속적인 검증과 적응의 필요성을 대변한다. |
<틀린 선택지> |
<틀린 선택지> |
<틀린 선택지> |
<이 글에서 얻어갈 개념 3가지> |
오늘은 여기까지입니다. 읽어주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
20일 뒤에 상병 가자 ㅋㅋㅋ 그런데 앵카박아서 가는 건데 이걸 좋아해야 하나
-
의대 불인증되면 2
그 아래 약대라인 점수는 올라가는 거라고 보면 되나요...?
-
안 친 학생은 그냥 디폴트 3.5점 감점 때리고 지원은 할 수 있게 했으면...
-
아 그냥 투과탐 할까 15
실력은 병신인데 자꾸 설대+메디컬이 눈에 아른거리네... 사1과1이 저점은 굉장히...
-
마감 직후에 진학사 봤을 땐 비슷했는데... 그나마 서어서문이 누적 표본 다 몰린...
-
[단독] 서울경찰청 "15일 새벽 3시 반 기동대 집결"…윤 대통령 체포영장 재집행 나선다 3
윤석열 대통령 체포영장 집행이 내일(15일) 오전 이뤄질 것이라는 관측이 유력한...
-
1.공익에 유익함 2.현실을 마주하는 용기를 발휘하는 경험을 하게 해줌...
-
부끄부끄
-
덧셈 나눗셈도 어려움..
-
다 계정 비활로 뜸
-
짤은 예식장 도우미 알바
-
높은 지거국 의대, 수학 및 화학 과외 경험 1년 있고, 2년 동안 시대인재 화학...
-
병아리를 닭장에 넣어두고 밥도주고 온도도 맞춰줬더니 닭장보고 감옥이라고 하네
-
맛저하세용 。◕‿◕。 18
넵
-
20살에 경기권 4년제 1학년 1학기만 다닌 후 휴학해서 반수를 했습니다 그리고...
-
가천대 한의대 합격 30
가천대 한의대 합격했습니다!
-
제발ㅠㅜ
-
ㅠㅠㅠ 2
-
설대리트 평균으로 로스쿨 아무데도못간다는데
-
모집정지에 대한 파장, 반발이 엄청날거같은데 진짜 정지될라나요 그리고 만약...
-
24 때 화장실에서 토론하는 거 보고 ㄹㅇ 평국어인 줄
-
과 이슈가 생각보다 큰 분들이 주로 그렇게 하시는듯뇨 유튜브에서 설인문?이랑 연홍영...
-
다시 수능판으로 이사가서 군수를 하겠습니다
-
너무 안움직이니까 발바닥이랑 엉덩이가 약해졋어
-
의평원 인증 떡밥이...... 원팡의는 대체 뭐한 거야 돈도 많으면서ㅜ 떡밥 도니까...
-
난이도 각각 어떻게 느껴지셨나요?
-
뒷북인가
-
07년생 인원수 의반 더블링(불인증 정말로 되면 더 많아질듯..) 의대 감축/모집정지(진짜 된다면)
-
조올려 0
살려줘
-
저 밑에 쓰신 후기 보고 떠올랐는데 퇴실 예상 시각 다 미리 공지해주고 커다란 표...
-
아닌가..
-
뭐가 나음?
-
제 2외국어를 안치고 19
서울대 문과 안불러줬다고 쌍욕하는건좀ㅎ...
-
내일도운동안하면내가짐승이다
-
제법 세월이 됩니다.
-
사탐런 6
요번에 사탐런 해서 개념 처음인데 방학까지 개념 한번 돌리는 것만 해도 될까요?
-
넘 귀찮아요... cu에 삼각김밥 구독권 있던거같은데 그거 해야되나
-
제가 지금 정승제t 개때잡 개기팔시 솔루션 진행하고 있는데 개념강의가 6월 까지...
-
안녕하세요 인서울 하위권 4년제 다니다 휴학하고 작년 9월에 입대해서 군생활중인...
-
ㅈㄱㄴ 알아듣기빡세네
-
정시 면접 후기는 흔하지 않은 것 같아 내년 지원자들분께 도움이 되었으면 해서...
-
챗GPT 이용한 AI 소총 등장… 오픈AI “개발자 즉각 차단” 2
정보통신 기술(IT) 전문 매체 기즈모토는 오픈AI가 챗GPT 질의에 응답해 자동...
-
못생겨 나이 많아 건강 안 좋아 머리 나빠 장점이 뭐야 대체
-
여친 만드는 법 3
1. 감자, 양파, 춘장을 준비한다. 2. 감자 3개와 양파 5개를 칼로 잘게...
-
공교육 #~#
-
대전 비전21 학원에서 이정환 선생님 미적반을 들어가려고 하는데 가격이 얼마 정도 인가요?
-
분탕이 꽤나 빨리 잠잠해짐
-
[속보]55경비단, 공수처에 ‘윤석열 대통령 관저 출입허가’ 회신 2
윤석열 대통령이 머무르는 서울 용산구 한남동 관저의 외곽 경비를 맡은 수도방위사령부...
-
시대 시즌1 0
님들 시대 라이브 지금신청해서 못듣죠?? 김은양쌤 라이브 듣고싶은디 신청기간때 신청안해서 ㅠㅠ
-
이미 등록해서 1
지금은 어차피 할 수 있는것도 없는데 왜이렇게 난리인지 모르겟네요
금융공학을 오르비에서 보곤 좋아요를 누르지 않을 수가 없었습니다…
금융수학 수업에서 열심히 증명했더랬죠
블랙숄즈 식 아직도 외우고 있는 1인