미분에 대하여
오랜만에 공부 얘기 좀 써 보려고 합니다.
제목 그대로 미분에 대해서입니다. (제가 제목 짓는 센스가 없어서...ㅋㅋ;;)
“미분계수란 무엇인가요?”라고 물으면 아마 “접선의 기울기”라고 대답하겠죠?
맞는 말이긴 하지만, 제 경험에 비추어 보면, 여기서도 찝찝함이 조금 남습니다.
“왜 접선의 기울기를 궁금해하지? 애초에 미분은 왜 하는 걸까?” (궁금해하세요.)
이 물음에 대한 저의 답을 이야기하고자 합니다.
우리가 모르는 함수 가 한 점 를 지난다고 합시다.
이 정보만을 갖고 우리가 에 대해서 무엇을 더 알 수 있을까요?
우리가 정확히 알 수 없는 때로는 복잡하고 때로는 추상적인 이상한 함수라도 우리는 이 함수를 알아야만 한다고 합시다.
결국 우리는 이러한 함수를 우리가 “통제하고 다루기 쉬운 꼴”로 “근사”해야 하겠지요.
여기서 두 가지를 명확하게 해야 합니다.
1. 우리가 통제하고 다루기 쉬운 꼴은 무엇인가?
2. 어떠한 근사가 좋은 근사인가?
우리가 통제하고 다루기 쉬운 대표적인 꼴은 "선형", 일차함수가 될 것입니다.
즉, 우리는 미지의 함수 를 아주 좋은 일차함수로 선형근사하고자 합니다.
그렇다면 어떠한 직선이 좋은 근사가 될 수 있을까요?
함수 가 점 를 지난다는 조건에 의하여 기울기가 미지수인 직선을 생각해 봅시다.
그러면 원래 함수와 당연히 오차가 생기겠지요. 그 오차를
라고 합시다.
아래 그림을 보면, 점와 멀어질 수록 일반적으로 원래 함수와의 차이는 커질 수 있겠지요.
하지만 에 가까워질 수록 그 차이는 의 값에 상관없이 항상 0에 수렴하게 됩니다.
그럼 여기서 가 어떠한 값을 가져야 차이가 0으로 가장 빠르게 줄어들 수 있을까요??
위의 두 번째 물음인 좋은 근사에 대한 답이 바로 다음과 같습니다.
좋은 근사 = 원래함수와 선형근사시킨 직선의 오차가 가장 빠르게 줄어들도록!
직관적으로, 오차가 줄어드는 속도가 가장 빠른 직선이 가장 좋은 선형근사라고 할 수 있겠습니다.
이제 우리는 오차가 가장 빠르게 줄어들도록 직선의 기울기를 결정해야 합니다.
이때 0으로 줄어드는 속도가 빠르다는 것은 극한의 언어를 빌려와서 설명할 수 있습니다.
똑같이 0을 극한값을 갖더라도 함수식이 갖는 인수의 개수가 더 많을수록 더 빠르게 0으로 수렴할 수 있겠지요? (조금 더 엄격하게, big O notation, little o notation을 통해 설명해야겠지만 넘어갑시다.)
0이 되는 인수를 하나 제거하더라도 여전히 0으로 줄어든다면 속도가 더 빠르다고 할 수 있겠습니다.
이것을 수식으로 옮겨 적으면 다음과 같겠네요.
우리가 찾은 기울기가 다음과 같게 됩니다!
우리는 위 극한값이 되는, 선형근사시킨 직선의 기울기를 "미분계수"라고 부르기로 약속한 것입니다.
그리고 이렇게 선형근사시키는 행위를 "미분"이라고 약속하며,
이런 최적의 선형근사가 가능하다면, 즉 위의 극한이 존재한다면 우리는 "미분 가능"하다고 부릅니다.
긴 글 읽어주셔서 감사하고, 여러모로 조금이나마 도움이 되셨길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
좋아요 1 답글 달기 신고
-
사문 질문 0
공유성은 특정 사회 성원이 공유하는 모든 후천적 행동 양식은 문화적 동질성에...
-
정답좀 알려줘 ..
-
..
-
갓셍살아야되는데
-
교수 쏘리.
-
왜 자꾸 117나오는거지…
-
사탐 뒤늦게 시작함. 생윤: 개념 한바퀴 돌리기 지루함. 처음엔 현자의 돌보다가 쌩...
-
ㅈㄱㄴ
-
얼버잠 0
다들 잘자요
-
오케이 인정 3
시발 문제 잘내네
-
수학문제가 안풀릴때마다 너무 분해서 집중이 안됨 오늘도 문제집 찢을뻔했는데 화를...
-
1조까지 옴..
-
졸피뎀중독걸릴거같아서 심한 거 아니면 참는중인데 진짜 스트레스
-
규칙적이게 해
-
-x 넣어서 빼는 것보다는 합성함수로 인식-> 양변 극소 동일함을 이용하는 게...
-
야식시킴 1
hoe
-
현실성은 없지만 만약 이거 뜬다면 나머지 개ㅈ박아도 성불할듯…
-
생명 실모 트레일러랑 한종철 풀어보신 분 계신가요!! 0
디카프 트레일러랑 한종철 철두철미 중 하나만 추천해주신다면 어떤게 좋을까요!...
-
빵굽습니다 0
-
잠안오네 조졌다 3
커피를 너무 먹었나...
-
남은기간 .. 정법 벼락치기로 .. 뭘할까요
-
걍 사설안할래 1
진짜 멘탈 ㅈㄴ 나감
-
괜히 사문했나 1
차라리 동사할껄 그랬나 사문 너무 많이 함
-
오늘부터 8
도서관에서 눈치 안보고 달려야겠다 오늘 계속 나도 모르게 후방주시하게 된듯
-
어릴적 꿈에 가득차서 열정적인 나는 어디가고 번아웃에 지쳐 왜 오르지 못하는가 왜...
-
시중에 푼 실모중에 제일 평가원같은듯. 문학 어려운데 답 근거가 명확하고 전반적으로 합리적인 느낌
-
개어렵네. 23분 걸려서 맞춤 역시 건너뛰길 잘했음
-
22번×12문제 0
아 오늘 참 열심히 공부한 듯 패드를 두고와서 인강도 못 듣고 양치기 바로 조지기 ㅋㅋㅋ
-
혹시 한국어가 좆망했을때를 대비
-
교육청 22번 풀면서 얻어가는 거도 많고 좋았는데 문해전시즌2도 비슷한가요??
-
이해원, 킬캠, 양승진모고, 김기현 컬렉션, 빡모 난이도 비교하면 어때요?
-
또 오랜만에 공부하네요 공부 20일도 안하고 시험 치겠네요 ㅋㅋㅋㅋㅋ 정신 못...
-
상황이해는 다 했는데 계산에서 망가짐 ㅍㅍ
-
밤새기 0
할게너무많은데.. 지금시기에 밤새는건 하는것만도 못한 행동이겠죠
-
국어 실모 ㅊㅊ 2
한 6개 파밍해야하는데 추천해주샤요 이감 파이널 12회 전회차랑 더프만 풀어봄...
-
지금 저의 제일 큰 문제가 수학이라고 생각이 드는데 전 통통이고 6모 수학...
-
예비고3이라서 가볼까하는데 고2후반부터 인강듣고 거의 혼자 했는데 독학...
-
하긴 할건데 가볍게 하고 넘어가는게맞을까요?? 올수보고 판단하면 되려나요
-
d-9 4
-
삐딱하게 살아 보려고 함 삐딱하게 살려고 마음먹으니까 괜찮아 다 괜찮아졌어
-
건대 공대가는거랑 취업에서 누가 더 유리함?
-
11덮 국어 3
풀기에 괜찮나요??? 저번주에 풀려고 했느데 저번주에 김승모 완전 망하고 또...
-
성격차이—-—- 남성양육비, 재산분할 남자의 외도——- 남성양육비, 재산분할 여성의...
-
20220722 4
이거 왤케 어렵지 다른 보통의 22번보다 더 어려운 듯 231122랑 난이도 면에선...
-
제보를 한답시고 pdf에 할X스를 담아 보내면 되지 않을까... 예를 들어 킬캠...
-
ㅇ 살려줘애줘 형만튀ㅛ면ㅇ다인? 아발아
-
KK 모의고사 지신 모의고사 뭐로 부르지
-
겁나많음 그냥 풀 수 있는데까지 풀어야지…
-
사자후 한번 질러야되나