2024학년도 리트 4~6, 지문분석 #학습자료
k라니... | |
이해국어 |
읽다가 처음에 뿜었던 지문입니다 ㄷㄷ
k라니...
어찌되었든 공부하는데 사용하시는 건 괜찮지만, 상업적 사용은 금합니다.
지문에 대한 세부 분석 | |
이해국어 |
[1문단]
금융, 마케팅, 의료 등 다양한 분야에서 생성되는 빅데이터는 많은 경우 개인정보를 포함하고 있어 데이터를 활용하는 과정에서 민감한 개인정보가 유출될 가능성이 있다. 따라서 빅데이터 구축 과정에서 개인정보의 전부 또는 일부를 삭제하거나 대체함으로써 개인의 신원이 드러나지 않도록 하면서도 해당 데이터의 활용성을 최대한 유지할 수 있도록 하는 개인정보 비식별화 기술을 사용한다.
1번째 부분: "금융, 마케팅, 의료 등 다양한 분야에서 생성되는 빅데이터는 많은 경우 개인정보를 포함하고 있어 데이터를 활용하는 과정에서 민감한 개인정보가 유출될 가능성이 있다." #빅데이터 #개인정보 #유출
2번째 부분: "따라서 빅데이터 구축 과정에서 개인정보의 전부 또는 일부를 삭제하거나 대체함으로써 개인의 신원이 드러나지 않도록 하면서도 해당 데이터의 활용성을 최대한 유지할 수 있도록 하는 개인정보 비식별화 기술을 사용한다." #개인정보비식별화기술 #신원보호 #데이터활용성
|
[2문단]
데이터 집합에서 정보를 표현하는 최소 단위를 속성이라고 하고 다양한 속성들의 조합으로 표현된 하나의 정보를 레코드라고 한다. 데이터 집합은 이 레코드들의 집합이다. 비식별화 기술은 속성을 식별자, 준식별자, 일반속성, 민감속성으로 구분한다. 주민번호와 같이 그 자체만으로도 누구인지 식별 가능한 속성이 식별자이다. 반면에 성별, 연령, 주소와 같이 개인에 대한 직접적인 식별은 불가능하지만 이들 속성이 결합하면 개인에 대한 식별이 가능해지는 속성을 준식별자라고 한다. 성별, 이름, 연령으로 구성되어 있는 원본 데이터 집합이 있을 때, 이름에서 성씨만을 남겨 비식별 데이터 집합을 만들었다고 하자. 비록 이름은 성만 남기고 가려져 있지만 남성이 유일하거나, 성이 이씨이면서 35세인 사람이 유일하다면, 원본에 이 두 사람이 포함된 사실을 알면서 이들 각자의 유일한 속성값 조합을 미리 알고 있는 사람은 특정 개인을 재식별할 수 있다. 일반적으로 개인정보는 개인의 여러 속성과 결합하여 사용된다. 익명 데이터라도 여러 속성과 결합하면 유일한 속성값 조합이 새로 생기게 되며 이에 따라 특정 개인이 재식별되는 불완전한 비식별 데이터 집합이 된다.
1번째 부분: "데이터 집합에서 정보를 표현하는 최소 단위를 속성이라고 하고 다양한 속성들의 조합으로 표현된 하나의 정보를 레코드라고 한다. 데이터 집합은 이 레코드들의 집합이다." #속성 #레코드 #데이터집합
2번째 부분: "비식별화 기술은 속성을 식별자, 준식별자, 일반속성, 민감속성으로 구분한다." #비식별화기술 #식별자 #준식별자 #일반속성 #민감속성
3번째 부분: "성별, 이름, 연령으로 구성되어 있는 원본 데이터 집합이 있을 때, 이름에서 성씨만을 남겨 비식별 데이터 집합을 만들었다고 하자." #원본데이터집합 #비식별데이터집합 #성씨
4번째 부분: "비록 이름은 성만 남기고 가려져 있지만 남성이 유일하거나, 성이 이씨이면서 35세인 사람이 유일하다면, 원본에 이 두 사람이 포함된 사실을 알면서 이들 각자의 유일한 속성값 조합을 미리 알고 있는 사람은 특정 개인을 재식별할 수 있다." #재식별 #유일한속성값조합
|
[3문단]
k-익명성은 특정 개인을 추정할 가능성을 1/k 이하로 낮추는 비식별화 기술로 원본 데이터 집합의 식별자나 준식별자 속성에 대해서만 마스킹, 범주화 등을 수행하여 유사한 준식별자 속성값들을 동일하게 만드는 작업을 수행한다. 마스킹은 홍길동을 홍으로 바꾸는 것이고 범주화는 35세를 30대로 바꾸는 식이다. 이렇게 만든 비식별 데이터 집합에서 준식별자 속성값들이 모두 동일한 레코드들의 집합을 동질집합이라고 하며 이때 레코드들의 수를 동질집합의 크기라고 한다. k-익명성은 비식별 처리로 만들어진 동질집합의 크기가 k개 미만인 동질집합을 모두 삭제하여 동질집합의 크기가 k개 이상 될 수 있도록 만든다. k가 2일 때 원본 데이터 집합에 있는 특정 개인의 준식별자를 미리 알고 있어도 비식별 데이터 집합만을 보고 원본의 특정 개인을 재식별하는 것은 불가능하다. 그러나 개인 추정 가능성은 존재한다. 즉 특정하고자 하는 개인이 속한 동질집합의 크기가 k일 때 이 특정 개인이 k명 중의 한 명임을 추정할 수 있으므로 1/k의 확률로 개인 추정이 가능하다.
1번째 부분: "k-익명성은 특정 개인을 추정할 가능성을 1/k 이하로 낮추는 비식별화 기술로 원본 데이터 집합의 식별자나 준식별자 속성에 대해서만 마스킹, 범주화 등을 수행하여 유사한 준식별자 속성값들을 동일하게 만드는 작업을 수행한다." #k익명성 #비식별화기술 #식별자 #준식별자 #마스킹 #범주화
2번째 부분: "이렇게 만든 비식별 데이터 집합에서 준식별자 속성값들이 모두 동일한 레코드들의 집합을 동질집합이라고 하며 이때 레코드들의 수를 동질집합의 크기라고 한다." #동질집합 #레코드
3번째 부분: "k-익명성은 비식별 처리로 만들어진 동질집합의 크기가 k개 미만인 동질집합을 모두 삭제하여 동질집합의 크기가 k개 이상 될 수 있도록 만든다." #k익명성 #동질집합의크기
4번째 부분: "k가 2일 때 원본 데이터 집합에 있는 특정 개인의 준식별자를 미리 알고 있어도 비식별 데이터 집합만을 보고 원본의 특정 개인을 재식별하는 것은 불가능하다." #k익명성 #재식별불가능
5번째 부분: "그러나 개인 추정 가능성은 존재한다. 즉 특정하고자 하는 개인이 속한 동질집합의 크기가 k일 때 이 특정 개인이 k명 중의 한 명임을 추정할 수 있으므로 1/k의 확률로 개인 추정이 가능하다." #개인추정가능성
|
[4문단]
k-익명성은 한 동질집합에 속하는 모든 레코드에서 준식별자 속성이 아닌 민감속성의 값이 모두 동일할 경우 해당 정보가 유출되는 단점이 있다. 민감속성은 병명, 수입 등 개인의 사생활과 관련된 속성을 의미한다. 예를 들어 동질집합이 3명의 레코드를 갖고 있고 이 3명이 모두 위암이라면, 홍길동이 동질집합의 3명 중 한 명이라는 사실을 아는 사람은 그중 누가 홍길동인지는 몰라도 홍길동이 위암이라는 사실을 정확히 알 수 있다. 이러한 k-익명성의 단점을 보완하기 위해 l-다양성을 추가로 적용한다.
1번째 부분: "k-익명성은 한 동질집합에 속하는 모든 레코드에서 준식별자 속성이 아닌 민감속성의 값이 모두 동일할 경우 해당 정보가 유출되는 단점이 있다." #k익명성 #동질집합 #민감속성 #정보유출
2번째 부분: "민감속성은 병명, 수입 등 개인의 사생활과 관련된 속성을 의미한다." #민감속성 #사생활
3번째 부분: "예를 들어 동질집합이 3명의 레코드를 갖고 있고 이 3명이 모두 위암이라면, 홍길동이 동질집합의 3명 중 한 명이라는 사실을 아는 사람은 그중 누가 홍길동인지는 몰라도 홍길동이 위암이라는 사실을 정확히 알 수 있다." #동질집합 #민감속성유출
4번째 부분: "이러한 k-익명성의 단점을 보완하기 위해 l-다양성을 추가로 적용한다." #l다양성 #k익명성보완
|
[5문단]
l-다양성은 동질집합에서 민감속성이 최소 l개의 서로 다른 속성값들을 갖도록 한다. 이 조건을 만족하지 못하는 동질집합은 비식별 데이터 집합에서 삭제한다. 앞의 예에서 동질집합의 병명 속성은 모두 위암 값만을 가지므로 다양성을 만족하지 못하기 때문에 이 동질집합은 삭제된다.
1번째 부분: "l-다양성은 동질집합에서 민감속성이 최소 l개의 서로 다른 속성값들을 갖도록 한다." #l다양성 #동질집합 #민감속성 #서로다른속성값
2번째 부분: "이 조건을 만족하지 못하는 동질집합은 비식별 데이터 집합에서 삭제한다." #조건불만족 #비식별데이터집합 #삭제
3번째 부분: "앞의 예에서 동질집합의 병명 속성은 모두 위암 값만을 가지므로 다양성을 만족하지 못하기 때문에 이 동질집합은 삭제된다." #예시 #병명속성 #위암 #다양성불만족 #동질집합삭제
|
[6문단]
비식별화 기술은 개인 식별 가능성은 낮출 수 있지만 정보 손실을 유발하기 때문에 구축된 빅데이터를 활용하는 측에서는 데이터의 가치가 낮아진다. 원본 유사도는 비식별 데이터 집합의 활용성을 나타내는 지표이며 원본 데이터 집합과 이를 비식별 처리한 비식별 데이터 집합이 얼마나 유사한지를 나타낸다. 이 지표는 레코드 잔존율과 레코드 유사도로 측정한다. 레코드 잔존율은 원본 데이터 집합의 총 레코드 수 대비 비식별 데이터 집합의 총 레코드 수를 백분율로 나타낸 지표이다. 한편 레코드 유사도는 원본 데이터 집합의 한 원본 레코드가 비식별 데이터 집합에 남아 있을 경우 원본 레코드와 비식별 레코드 쌍 간의 통계적 유사성을 0과 1 사이의 값으로 표현한 지표이다.
1번째 부분: "비식별화 기술은 개인 식별 가능성은 낮출 수 있지만 정보 손실을 유발하기 때문에 구축된 빅데이터를 활용하는 측에서는 데이터의 가치가 낮아진다." #비식별화기술 #개인식별가능성 #정보손실 #데이터가치
2번째 부분: "원본 유사도는 비식별 데이터 집합의 활용성을 나타내는 지표이며 원본 데이터 집합과 이를 비식별 처리한 비식별 데이터 집합이 얼마나 유사한지를 나타낸다." #원본유사도 #비식별데이터집합 #활용성지표
3번째 부분: "레코드 잔존율은 원본 데이터 집합의 총 레코드 수 대비 비식별 데이터 집합의 총 레코드 수를 백분율로 나타낸 지표이다." #레코드잔존율 #백분율지표
4번째 부분: "레코드 유사도는 원본 데이터 집합의 한 원본 레코드가 비식별 데이터 집합에 남아 있을 경우 원본 레코드와 비식별 레코드 쌍 간의 통계적 유사성을 0과 1 사이의 값으로 표현한 지표이다." #레코드유사도 #통계적유사성
|
한 번 의미를 생각해보자 | |
이해국어 |
[1문단]
이 문장에서는 "빅데이터", "개인정보", "유출", "개인정보 비식별화 기술"이라는 키워드를 중심으로 내용을 분석할 수 있습니다.
이 문장들을 종합해보면, 현대 사회에서 빅데이터의 활용은 매우 중요하지만, 이 과정에서 개인정보 보호는 큰 도전과제로 남아있습니다. 개인정보 비식별화 기술은 이러한 문제를 해결하기 위한 중요한 도구로 제시되며, 이는 빅데이터를 활용하는 동시에 개인의 신원 보호를 가능하게 하는 기술적 접근법입니다. 이러한 내용 분석은 글의 객관성을 유지하며 핵심적인 내용과 키워드의 중요성을 파악하는 데 도움이 됩니다.
[2문단]
이 문단에서 주요 키워드는 "속성", "레코드", "비식별화 기술", "식별자", "준식별자", "일반속성", "민감속성", "재식별"입니다. 이 키워드들을 통해 데이터의 구조와 비식별화 과정에서의 주요 개념과 문제점을 이해할 수 있습니다.
이 문단의 분석은 데이터의 구조와 비식별화 기술의 중요성, 그리고 재식별 가능성의 문제를 이해하는 데 도움을 줍니다. 비식별화 기술이 개인정보 보호에 핵심적인 역할을 하지만, 완벽한 비식별화를 달성하기 위한 도전이 있음을 강조합니다. 데이터 집합의 구조와 속성 분류 방식에 대한 이해는 데이터 보호 전략을 수립하는 데 필수적입니다.
[3문단]
이 문단에서 주요 키워드는 "k-익명성", "비식별화 기술", "식별자", "준식별자", "마스킹", "범주화", "동질집합", "개인 추정 가능성"입니다. 이러한 키워드를 중심으로 내용을 분석하면 다음과 같습니다.
이 분석은 k-익명성의 개념, 구현 방법, 그리고 이를 통한 개인정보 보호의 장점과 한계를 이해하는 데 도움을 줍니다. k-익명성은 개인의 프라이버시 보호를 위해 널리 사용되는 비식별화 기술이지만, 이 기술만으로는 모든 개인정보 보호 문제를 해결할 수 없음을 인식하는 것이 중요합니다.
[4문단]
이 문단은 k-익명성의 한계와 그 한계를 보완하기 위한 l-다양성이라는 개념을 소개합니다. 주요 키워드로는 "k-익명성", "동질집합", "준식별자", "민감속성", "l-다양성"이 있으며, 이를 통해 개인정보 보호 기술의 발전 방향을 이해할 수 있습니다.
이 분석을 통해, 개인정보 보호 기술은 시간이 지나면서 발전하고 있으며, 이전 기술의 한계를 보완하는 새로운 접근 방식이 도입되고 있음을 이해할 수 있습니다. k-익명성과 l-다양성은 개인정보 비식별화의 중요한 개념으로, 데이터 보호 전략을 수립할 때 고려해야 할 핵심 요소입니다.
[5문단]
이 문단은 l-다양성 개념을 설명하고, 이를 통해 데이터 집합에서 민감속성의 다양성을 어떻게 확보하는지 구체적인 예를 들어 설명합니다. 주요 키워드는 "l-다양성", "동질집합", "민감속성", "서로 다른 속성값", "비식별 데이터 집합"입니다. 이를 통해 l-다양성이 개인정보 보호에 어떻게 기여하는지 분석하셔야 합니다.
l-다양성은 k-익명성의 한계를 보완하는 중요한 개념으로, 동질집합 내의 민감속성 값에 다양성을 부여함으로써 데이터 집합 내에서 개인의 프라이버시를 보호하는 데 기여합니다. 이러한 접근 방식은 개인정보 보호 기술의 발전을 반영하며, 데이터 보호 전략을 수립할 때 고려해야 할 핵심 요소 중 하나입니다.
[6문단]
이 문단에서는 비식별화 기술의 영향과 그에 따른 데이터의 가치 변화, 그리고 비식별 데이터 집합의 활용성을 나타내는 지표에 대한 설명이 포함되어 있습니다. 주요 키워드로는 "비식별화 기술", "개인 식별 가능성", "정보 손실", "원본 유사도", "레코드 잔존율", "레코드 유사도"가 있습니다. 이를 통해 비식별화 과정에서 발생하는 데이터 가치의 변화와 이를 측정하는 방법에 대해 이해할 수 있습니다.
이러한 분석을 통해 비식별화 과정에서 발생하는 정보 손실의 영향과 이를 측정하는 지표들에 대한 이해를 돕습니다. 비식별화 기술은 개인정보 보호와 데이터 활용 사이의 균형을 찾는 데 중요한 역할을 하지만, 이 과정에서 데이터의 가치를 최대한 보존하는 것 역시 중요한 과제임을 시사합니다.
당위성 | |
수능국어 공략집, 이해국어 |
수능 독서가 쉽게 나오겠다는 예측이 있습니다.
다만 아직 출제 지침이 나오기 전까지 확정적으로 말하기는 힘들기에
모든 것을 다 준비한다는 관점에서 리트 분석 자료를 올립니다.
앞으로도 계속 나올테니 관심있으신 분들은
팔로우 부탁드려요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전 계정은 일찍 만들어뒀는데 고등학교 2학년 말 쯤에 수능 관련 정보 구글에...
-
정말 자야만해 0
죽기 싫어
-
저도이제잘게요 5
옯친구들 다들 잘장
-
1단원 문제 3개 투척! 풀이해주시면 1000덕 드림
-
대존맛임뇨
-
저한테 버려주실 분 9함뇨 저는 덕코를 드리겠습니다
-
성대생 소환술 3
"응 니네 이과 싹 다 유배" "서성한중"
-
시이발
-
혹시 저에게 하는 말이라고 이해해도 될까요?아니오 주어는 없습니다 :)
-
제발 제 잡담 태그를 꺼주세요 얘 ㄹㅇ 쓸모없는 글만 하루에 20개 쓰고 쓸모 있는...
-
작년 12월인가 인스타 현우진꺼 보고있었는데 스토리로 누굴 저격하는거임 ㅋㅋㅋ...
-
오르비 1
내리비 오르락내리락 반복돼 기쁨과 슬픔이 반복돼~
-
수1 수2 둘 다 들으려고 하고 개념 꼼꼼히 설명해주는 강사보다 팁 주고 강의 수...
-
김상훈 6
문학론이랑 문학 개념 매뉴얼 중에 뭐 해야하나요? 둘다 해여하나요?
-
케리아랑 좀 비슷하다 자꾸 겹쳐보인다
-
성적도 안좋은데 뻘글이나 싸지른 중게이라 ㅈㅅㅎㄴㄷ
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 4
논리싫증주의자는 관심이 없다
-
정병걸리는 학생 0
-
[칼럼] 어떻게 해야 오르비에 잘 적응할 수 있는가 13
여기에는 여러가지 방법이 있으나 본인이 아는 대표적인 방법을 알려주고자 한다. 1....
-
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
대학커뮤니티 노크에서 선발한 이화여대 선배가 오르비에 있는 예비 이화여대학생,...
-
미적투표 4
26수능 시험지에서 보고싶은 문항배치는??
-
수특 출고 예정일 12
화1이 왜 과탐 1위 입고 엌
-
No를 쓰는게 아니라구요!!!!!
-
이거 맞음?? 뭔 중세 성같네
-
초단타 1
내일 점심값 굳었다
-
캬하하하
-
모고3~4등급(고2)정도 뜨고 확통입니다. 이번에 선생님과 상담하다가 정승제...
-
유튜브 댓글에서 강k가 평가원보다 퀄리티가 더 좋다던대 진짜임?
-
이것저것 해보긴 했는데.. 학교다니면서 하려면 편의점같은게 낫겠지 가르치는데...
-
당사자의 추가입장입니다 24
근데 댓글 보면서 느끼는게 예시로 든거 같고 사실관계가 틀리다니... 나한테 한...
-
솔직히 좀 편했음ㅋㅋ 올해도 안나왔으면 하는데
-
시대 자료 다 자기가 이름짓는다고... 그런김에 서바모음도 뿌려줘요
-
내가 S면 넌 나의 11
EX가 되어줘
-
진짜 잘생기긴했다
-
포폴과 자본의 중요함 like 덕코 용돈 마싰다
-
시대인재 두각 세정 같은곳 말고 내신때문에 꽤 있을려나
-
1. 소설에서의 장면나누기 관련 칼럼 2. 최근 이슈화된 문학 선지들 뜯어보기 칼럼...
-
나 궁금해 죽을거 같아
-
수고해
-
평소보다 빨리 취하나요? 정신은 차릴수있는데 존나 어지러운데 500ml 6분인가7분컷함
-
네가 살려내볼게
-
실력을 떠나서 책임감이 없노 받은 돈이 얼만디.. 연락을 씹어버리네 넌 장사하지 마라 그냥 ㅇㅇ
-
노잼이다 7
-
오는 길에 우리내과 옆에 두성인쇄라고 있거든? 거기서 3000원 내면 책 제단 제본...
첫번째 댓글의 주인공이 되어보세요.