인스타그램에서 본 문항 변형 (고1 다항식)
팁:
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
모르겠고 돌려줘....... 성 경영 최초합 축하드리고요 더 높은 데 가세요 ㅈㅂ...
-
다른 학교와는 다르게 특기생을 안 뽑아서 프로 나가는 경우가 거의 없는데,이번에...
-
재종 수업때 자니까 12
쌤이 저 깨우고 나와서 문제 풀어보라고 함 그래서 정확히 푸니까 별 말 안 하심
-
그럼 학년은 진급하는건가
-
눈온다 4
몇년만이지
-
이이잉
-
서울에 연고전이 있다면 서울 제외 수도권엔 아인전이 있다 갠적으로 이미지가 아주대가...
-
궁금
-
현역 5 재수해서 3 삼수/삼반수 생각인데 확통 1등급 받고 싶음. 현우진 커리...
-
기하 차별아닌가요? 소수과목 차별하는건가요? 제정신이에요?
-
야 사수생이 어케 귀여워? 내일부터 문학 기출분석 실시 16회분 분석 ㄱㄱ혓
-
ㅠㅠㅠ
-
넘 맛있다
-
2.5수 하면 안되는거임?
-
평화로우려면 주체의 삶을 회복해야한다는데 기숙사에 사는순간 주체라는건존재하지않음.....
-
중대 정도면 3
점공이나 ㄴㅈ 참여 비율 높음??
-
여자05고 현역 수시합격,대학포기(정시 언미생지로 낮2낮3254)->재수 정시...
-
21명 모집 낙지 맨 마지막에 65-68명 중 25등 근데 실지원자 102명...
-
이것뭐에요 4
이건 뭐임? 가짜 표본??
-
올해최고의게이 7
다군6칸떨어질까봐 떨던 나. 까고보니 안정인건에대하여
-
전 설 연휴 일주일 빼고 남은 2주간 약속 8번 잡힘요 친구들아 정말 보고 싶지만...
-
고대 생명공학부 고대 화공생명공 두 개 커트가 대략적으로 어느 정도일까요ㅜㅜ
-
겨울방학에는 어쩔 수 없겠징..
-
예비고2 입니다! 백호와 한종철 선생님 중 겨울방학에 어떤 분을 들어야 할지...
-
지난번에 쓴 '교육학과 장환영 교수님과의 면담'에서 이어지는 내용입니다...
-
문학 비문학 선택 뿐만아니라 비문학/문학 쉬운지문 어려운지문 기준으로 어느정도...
-
윈터 멘탈 ㄷㄷ 12
악플러 컷
-
수학 문제 계속 풀 때 15
노래들으면서 해도 괜찮나… 그냥 집중해서 푸는게 나으려나요?
-
동일과기준 ㅇㅇ
-
동덕여대 가기 쉽지 않은 학교였어 여윽시
-
경북대 vs 광운대 12
반수 생각도 하고 있고 실패하면 계속 다녀야하니까 고민이 많네요 경북대...
-
지2 1
강k모고 지투도 나오나요?
-
풀업 재밌당 10
아직 뉴비라 머신에 있는걸로 연습 벅벅하는데 재밌음뇨
-
슬슬 오르비에서 2
게시글 댓글 0개여도 안무서움 나도 적응햇나보다
-
조발하면 둘 다 같이 하나요?
-
약대 목표면 걍 이대로 가는게 나은가? 근데 미적만 틀렸는데 어카지
-
이거 붙을 수 있을까요 11
22 23 24 순서데로 예비 73번 57번 61번까지 돌았어요 이거 떨어지면...
-
에바인가요..? 합격하고 뽕차서 사버렸는데
-
가끔 오르비 보다보면 특정당할까봐 과같은거 얘기안하시거나 점수같은거 얘기안하시던데...
-
파이널까지 풀커리 탈게요 쓰앵님
-
걔네가 없었으면 걔네보다 더 낮은 애들이 붙었단거임...
-
중앙대 경영 24학번으로 최저학점반수를 했고 사탐공대를 생각해보고있습니다. 중앙대...
-
올해 중앙대 마저 모으고 내년엔 서울 연세 건국까지 수집 도전해야지 흐흐
-
션티 1
션티 = 션선생님 션티 선생님 = 션티t = 션선생님선생님 션티t선생님 = 션선생님선생님선생님
-
가능성 있나요 여기라도 붙여두고싶은데……
-
친구들이랑 자주 얘기하던 주제인데 저는 예전에 사람 인체모형보고 트라우마 씨게 남아서 못갈거같음요
-
외대에서 설대? 수학이 너무 아쉬워서 어려울 것 같음… 최대가 ky일듯…
-
성약 vs 연약 6
설중성이라길래 어디가 더 쎄요?
-
뭐 쓰지 흠... 보조사 '요'는 사실 '이오(이-+-오)'에서 왔다. 그니까...
고1 때 저거 진짜 싫어했는데 오랜만이네요.. 팁 두 번째 식은 처음 봐요
저도 고1 과외 준비하면서 두 번째 식 오랜만에 복습했네요 ㅋㅋㅋㅋ 저런 것을 어떻게 떠올리지... 하는 생각과 함께 수학과는 저런 수식 혼자 발견해내는 분들이 가는 곳 같구나 싶었습니다
3, 정답!
3
3, 정답!
대충 (1,1,1)
x=y=z=1 정답!
3아님? (x,y,z)=(1,1,1)이라고 할 때, 일반성을 잃지 않으므로
일반성은 잃지 않나요? 연립 방정식을 만족하는 순서쌍을 하나 찾았을 뿐이니
구랑 직선이 한점에서 접하는거 생각해보면 되지 않을까요?
음... 구에 평면이 접하는 것으로 문제 상황을 설명할 수는 있는데 이것은 전제를 특정 경우로 좁히는 것에 해당하여 '일반성을 잃지 않는다'라는 표현을 쓸 수 있는지 헷갈려 여쭤보았습니다
아아
(1,1,1)이 두 식 모두에 성립하고, 그 외의 추가조건이 없으므로 일반성을 잃지 않는다고 생각했습니다
45도 각도로 그래프 생각해봐도 (1,1,1)에서 접하게 돼있네요
오... 저게 어떻게 생각하는 것이죠?
제 밑에분 그래프를 특정 방향에서 바라본걸 그린거에요
와우 대단하시네요... 저도 고민해보겠습니다 좋은 풀이 공유 감사드립니다
저 연립방정식
좌표공간에서 그려보면 1 1 1 뜸
고로 계산하면 3
두 독립변수, 한 종속변수에 대한 상황이라 생각하여 좌표 공간 활용 좋네요~~