[dacoon] 공간벡터 연습문제
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
12000명 실화냐
-
아 슈발 그것도 모르고 8캔 사고 얼음컵 사니까 2만원 가까이 나와서 당황했네......
-
오늘부터 다시 맘먹고
-
공지 사항이나 정오표로 정정 안 하고 수강생들에게만 쪽지를 보내서 정정하는 파렴치한 경우도 있나요?
-
아으 추워 0
겨울 다 됐네
-
수능목표 11321
-
협곡은 좀 오래하기 빡셈
-
내년고3되는데 올핸 메가패스쓰긴했는데.. 국어를 대성들을거같아서 고민이ㅔ요
-
지난 2년간 수능 끝나고 폰 받자마자 수능장에서 국수 빠른채점 돌림… 근데 올해는...
-
적중예감 보면 항상 30점대 후반을 맞아요... 진짜 어쩌죠ㅠㅠ
-
모레 바로 수능보기
-
아오
-
☆대성 19패스 phil0413 추천해주시면 감사하겠습니다. 서로 1만원권 받게요^-^ 1
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 대성패스와 함께...
-
다들 사놓고 지금까지 안 푼 책 몇 권 정도 됨??? 나만 못 푼 거 많아서 아까운...
-
탈릅한 사람 프로필 누르니 502 bad gateway 뜨네 1
원래 비둘기 얼굴 나오는 거 아니었음? 이거
-
내가 이러면 안 되지.. 힘내서 공부하러 갈게요 죄송합니다
-
72면 몇정도 되나요? 오랜만에 문학 다 맞췄는데 독서 다 틀려서 하.. 3...
-
심멘
-
수많은 저렙 노프사들의 기만의 향연...
-
작년에 대성 사전예약이 앞으로 1년 있을 패스 중에 가장 혜자 였는데 올해도 아마...
-
나랑 할 사람
-
히카 8 0
히카 7 너무 좋앗는데 8두 비슷한가요?? 푸셨던분들 답변 부탁드려요
-
저번주 화요일에 시작했고, 일주일 돌려서 18만원 정도 벌었네요 이번주와 다음주는...
-
익숙한 북한지역 0
삼수군
-
근데 트리비 임티는 진짜 그분인건가ㅋㅋㅋ
-
아무리봐도 ㅈㄴ 당황스러운문제네 잘푼사람입장에서도 ㄴ, ㄷ이 너무 터무니없는 소리라...
-
왔나? 20
아직이네..
-
이 그래프가 서로 다른 네 실근이 맞나요..? 가운데 두 개는 중근 아닌지.. ㅜㅜ 혼업스럽 ㅠ
-
이시기 마인드 1
어떻게 잡는게 가장 좋다고 생각하시나요?? 무조건 잘볼거다라고 생각하는게 맞나요?
-
11투스 언매 0
1컷 어느정도일까요 쉬웟던거같은데
-
무슨일을 하든간에 메타인지, 핵심을 꿰뚫는 통찰력이 0
제일 중요하지않나 싶어요
-
내 인생의 직감이 말해주는준
-
박광일 인강 0
박광일이 현강한다고 한 곳인 대치 엘브라운에 전화문의 했는데 거기선 인강 안한다고 함.
-
음.. 역시 망했군
-
11/14 대학수학능력시험 성적통지표 일단 나부터 국어 2(91~92) 수학...
-
수학 0
9일 남은 시점에서 하루 2실모+오답 vs 하루 1실모 오답 + n제 벅벅 뭐가 더 나을까요??
-
23시행 수능이랑 24시행 6.9모 사문.정법 분위기 어때요? 22시행 수능 때...
-
직전용으로 난이도 ㄱㅊ나요? 너무 어려운것만 아니면 되는데 다른거 추천해주셔도 됨요
-
11투스 해설 1
안 올라오나여? 제가 못 찾는 건가요 ㅠㅠ
-
사설하나틀릴때마다진짜죽고싶음시발44점이3컷이라니
-
친구한테말하니까 이상하고함 ㅇㅇ. 보통이런고민하지않나 뭐가가치있는건가 하는질문
-
국어 남은기간동안 22수능 23수능 24수능 올해 6모 이렇게 4개 시간재고...
-
저는 1. 하이브 시리즈 2. 비질란테 3. 후레자식 4. 더복서 5. 세상은돈과권력
-
사탐 벼락치기 0
5일동안 쌍윤 벼락치기 가능하겟죠…ㅋㅋㅋㅋㅋ 9모 1,1인데 좀 유기하니까 끝날끝도 엄청틀리네…
-
ㄹㅇ 담임쌤이 한장 쓰라고 했는데 객기 부리다가 대학 못가서 재수중인데 올해는...
-
이시점에 이마다 사야하나 패스없는데
-
누워있는데 보보봇치님 생각이,, 항상 사랑해요,,,
-
ㄹㅇ
43
난이도 매우 어렵네요..
아이디어만 봐서 맞을지는 모르겟는데 ㅠㅠ
일단 저 평면과 원이 만나는 것을 단면화 시키고 y축과 수직인 관계를 이룰라면 x축과 평행하게 이루어야되고
저 두 식을 연립하고 z성분을 소거시켜주면 정사영한 타원의 방정식이 나오는데
타원위의 임의의 점을 잡고 x축 대칭이니까 y좌표만 양수음수만 바꾸고 삼각형 넓이를 구하고
삼각방정식으로서 해결하면 될거같긴한데
이렇게 접근하는거 맞나요..?
그리고 좌표를 잡기가 편하다고 생각하는 이유는
저 평면이 단면화 한 상태에서 yz상으로 그냥 끝점을 지나게 단면화를 해버려서요
그런 접근이 쉽게 푸는 풀이에요 ㅎㅎㅎ
정사영의 정의대로 접근하면 복잡한 풀이구요
근데 정사영한함수를 매개화 안시키고 공간상에서 바로 논리적으로 어떻게할수있을까요?
그게 고등과정에선 힘드니 어떤걸 변수로 놓을지 결정해야하는데,,
이 문제의 경우에는 PQ의 중점과 원점 사이의 거리를 변수로 놓으면 이면각과 삼각형의 넓이를 모두 한 변수에 대해 정리할 수 있어요!
그냥 처음 생각한대로 하는것이 고교과정내에서는 좀 더 필연적이겠네요!
감사합니다
123454354321
맞나요?
43 정답입니다!