[자작문제] 수2-숫자감각
정수론은 아니고 적분상수 구할 때 숫자감각이 필요해요
0 XDK (+50)
-
50
-
나는 모든 준비를 마쳤다. 와라 달콤한 시험이여
-
91인데 수능 때 1 가능할까요ㅜㅜㅜㅜㅜㅜ
-
배탈남 하…
-
언제나 80 81 84
-
90 95 99 100 95 ?? 어 이거완전..?
-
ㅠㅠ 또 나만 어렵지..
-
작수는 답개수로 밀어서 달달했는데..
-
???
-
님들은 잘만 보내지고 있나요?
-
영어 무물보 36
영어 공부법 무물보
-
1회 찍맞없이 88이였는데 2회 78임ㅋㅋ 씨벌 뭐냐? 더 쉬웠다는데
-
1등 47000 2등 44000 3등 39000 총 3명 추첨할게요 10시까지...
-
강x풀다가 이게 어떻게 1컷 88이 나올만한 시험지인가 싶고... 그런거 외에도 전...
-
화작 20분 독서론3분 독서 앞에 2지문 17분 문학+마킹 30분 나머지 시간...
-
혹시라도 모집정지 뜨시면 어쩔거임?? 그냥 이번년에 가실건가요? 아니면 내년까지 바라보시나?
-
뼈때리는 한마디 2
지금 이거 볼 시간에 실수는 지문 하나 더 읽는다
-
[주장] 그럼에도 불구하고 학생부 종합 전형이 존재해야 하는 까닭 20
고등학교 교사로 재직할 당시 동료 교사들 중에, 다른 대입 전형은 싹 다 없애고...
-
아수라 보면 6월 9월 모의고사 지문으로 공부하는데 왜인가요? 이미 나온거라 수능에...
-
뭐가나음 배고픈데
-
일단 나는 고등학교 1학년 때까지 유도/주짓수 선수부 생활을 하다가 천재들을 만나며...
-
기하 재능임? 5
중등 도형 포함
-
고전 쪽이 항상 시간을 많이 잡아먹고 안고쳐서 문학만 우기분 들으려는데 괜찮나요?...
-
기출난이도 2
240628 vs 241128 뭐가 더 어렵다 생각하나요 전 개인적으로 06
-
지구 서바 푸는데 해강 들어도 모르겟는건 걍 넘겨도 돼?
-
삼수할듯싶음... 10
정확히는 삼반수긴한데...씨발 ㅜ
-
교육청에 나왔던거 수능에 재탕 가능성 있냐? 5모에 낙은별곡 나왔잖아 근데 이게...
-
jpop추천 1
몽글몽글한 분위기가 참 좋아요
-
내일까지 갈지 안갈지 가정통신문에 체크해서 내야되거든요 오늘 쌤한테 현체안가면...
-
근데 난 허수였은디 84점 나옴(!!) 물론 내가 듣기를 다 맞을 가능세계는...
-
솔직히 수능전이라고 기세올린다고 미리답베끼고 학프? 가는사람들 무조건 있을듯 솔직히...
-
다 4점짜리 틀린다고 가정했을 때 머가 더 표점 잘 나옴?
-
오랜만에 영어 2
2시간 했는데 엄청 지치네 감이 다 뒤진게 느껴짐
-
드렁큰미하리
-
2:02 원투쓰리포 하고 나오는 기타가 ㄹㅇ 진짜무발사ㄱㄴ
-
집가구 싶어 6
일하기 싫어
-
5000부 판매돌파 지구과학 막판 총정리집을 소개합니다. (현재 오르비전자책 1위)...
-
더프는 등급컷을 4
응시한 사람만 낸 등급을 봐야해요 아닌 실제(보정) 컷을 봐야해요? 응시한 사람것만...
-
3,4등급 계속 나오길래 안심했다가 요즘 자꾸 6등급 나옴... 그냥 풀고 오답만...
-
아 취한뎌 4
ㅋㅋ크
-
교재판매 종료됐다길래 혹시나 해서 서둘러 결제하기 버튼 눌렀는데 아무것도 안했는데...
-
아무것도 하기 싫어…
-
솔직히 수능때 2등급도 자신없음 수능 표본때문에 ㅈㄴ 불안하고 지금 내 실력도...
-
비록 수특, 수완이지만 듣보잡에서 배웠던 내용 토대로 다 맞추었음 좀 더 노력해서...
-
사실 그냥 내가 틀려서 열받은거긴 한데 적어도 해석을 물어볼거면 글자 근거로...
-
전북대 의대 될까요? 물지입니다
-
ㅠㅠ
-
과민성 대장 증후군 ㅜㅜ 약 먹는데도 그대로라 내일 더 사와야 할 거 같아요
-
닉변을해볼까요. 28
흠 앞에 수식어 하나 붙이는 식으로 할까 고민중
-
한번씩 뻘글쓰면 댓글에 "국어 누구 들음"이런 댓글보이던데 무슨밈이지 이거,,,
서로 다른 네 근 -> 서로 다른 네 실근
이 정도는 알아서 봐주겠지
f'(k)는 삼차식이기 때문에 방정식에서 근이 4개가 나올 수 없지 않나요?
f(x)근개수가 4개에요
방정식이라고 나와있어 함부로 적분할 수 없는거 아닌가요..? 오랜만에 문제 봐서 헷갈리네요ㅠㅠ
무슨말인지 잘 모르겠는데 f(x)자체는 함수로 정의돼있어서 상관없지 않을까요
f'(x)가 오른쪽 식이랑 다르다면 방정식을 풀어야하는데 f'(k)=오른쪽 식이라면 근은 f(k)=0일 때가 되죠
좌변과 우변이 항등식이라면 (k의 값에 관계 없이 같은 식이라면) 적분을 해도 좌변과 우변이 같을 수 있습니다
하지만 좌변과 우변이 방정식이라면 (좌변과 우변이 같도록 하는 k의 값을 찾아야 하는 식이라면) 적분을 했을 때 원래의 식과 다른 해가 나올 수 있다고 배웠어요
최대한 기억나는대로 썼는데 제가 틀렸나요..?
f(k=0일때만 근을 가질 수있는 가능성이 있는데 f’(k)=3차식 방정식에서 근이 4개가 나오려면 일단 f(k)=0일 때 모두 저 식을 만족시켜야합니다. 그런데 님 말대로 3차식은 근이 4개가 될수가 없습니다. 그러면 항등식일 수 밖에 없습니다 (점 4개가 정해졌으므로). 그래서 f’(k)=가조건 우변 이됩니다.
그럼 근이 무수히 많은게 되는거 아닌가요 가조건 뭔가 이상한데
극한식이니 f(k)=0도 만족시켜야함요
아니요, f(k)=0이 아니라면 극한식이 발산하므로 무수히 많을 수 없습니다. f(k)=0이 아니라면 미분하는 식이 아니라는걸 기억해야합니다
적분하신다는게 무슨말씀이죠??
저 방정식의 해는 f(k)=0이면서
f'(k)=오른쪽 식인 k값인데, 만약 f'(k)랑 오른쪽 식이 같지 않으면 f'(k)=오른쪽 식이란 거에서 이미 근이 4개 미만으로 나오니 f'(k)=오른쪽 식(이거는 이제 모든 k에 대해 만족하고)을 제외하고 f(k)=0인 게 근이 되는 거예요
아! 이렇게 분리해서 보니 이해가 됐네요..
f(k)=0과 f'(k)=삼차식을 만족시키는 k값의 교집합의 원소의 개수가 4개이다 정도로 깔끔하게 정리되네요 아직 더 공부해야 할 것 같네요..ㅠㅠ
좋은 내용 배워갑니다 감사합니다!
아맞네 ㅋㅋ되송
K에대한 방정식
적분상수 그냥 0인것같은데
답 24인가
24 맞음 ㅇㅇ
저게 삼차식 이슈가 아니라
걍 말 그대로 우변이 f를 미분한거임
실근이 4 개라는건 걍 f의 실근이 4개란 뜻
사실 저사람들 무슨말하는지 이해안가요
걍 단순하게 생각하면 될문젠디
fx의 실근이 4개인것에 더해서 원래 가조건은 방정식이라 바로 저게 f’(k)라고 둘수는 없고 삼차식=삼차식의 근이 4개라는 것에서 f’(k)에 대한 항등식이라는걸 떠올려내야 하지 않나요?
그런거같아요
가조건 저도 아니 삼차식인데 근이 4개가 어케 됨? 햇는데 그러므로 항등식이다 이 뜻이었군요;; 배워감
도함수를 저런식으로 줄수도 잇구나
답 24
적분했을때 4차항부터 1차항까지 계수보고 -1 0 1 때려넣어도 상쇄되겠다 싶어서 적분상수구했어요
4차함수 그래프에서 y=t와 만나는 근 간 간격이 같은 t는 하나밖에 없으므로 0으로 특정했구요

오르비에서 의뱃은 3일 안에 프사를 만들어야 합니다.적분상수를 우변으로 넘겨 f(k)=-c라는 식을 만들었을 때 f(k)=0의 근이 -1,0,1,2라서 그냥 c는 0이구나 싶었습니다. 만약, f(k)=0의 근이 -1,0,1,2가 아니라서 (나)조건을 만족시키지 않는다면, c를 구하는 방법이 무엇인가요
아직 수2를 한 번 밖에 공부하지 않은 예비고2입니다...
적당한 수를 찍어야조 유일할 테니.
발산하는 극한이 방정식의 한 항으로서 존재할 수 있나요?
아니라면 (가) 조건에서 (좌변)이 수렴할 때만 논할 수 있으니 f(k)=0을 만족시키는 k값들만을 다루어야 하고
k에 대한 방정식 f'(k)=(우변)은 삼차방정식 혹은 이차방정식이기 때문에 최대 세 근을 지닐 수 있어 (중근 복셈, 허근 고려) 모순이지 않나 하는 생각