나름 재밌는 문제 투척
갤러리에 썩히기 아까워서 여기라도 올려봄
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아 내일 복귀네 1
복귀하고 공부 다시 시작해여겠다
-
뉴비네요
-
제발제발쪽지부탁드립니디두ㅡㅜㅜㅜ
-
ㄹㅈㄷ 몰카인가 생각했네
-
누가 탈릅했네 4
흠
-
질문있는
-
10분휴식. 4
-
아 ㅈ됐네 2
어제 저녁 먹고 잤는데 왜 일어나니까 4시냐
-
그럼 지금 고속 자체가 의미 없지않나 차라리 담임쌤도르가 더 의미있는거임?
-
하지만 우리의 윽건이는 ‘꼬우면 재수하지 말지 그랬어’로 받아쳐서 그 누구도 더...
-
어이 내일의 나 4
일어나면 게시글 밀어라
-
잔다 4
르크
-
들 때가 있음 디시콘은 종류가 다양해서 다양한 감정을 표현할 수 있는데 오르비...
-
자야겟뇨 4
오늘도 암것도 안햇뇨
-
역시 하루종일 침대에 누워있는게 맞음 남자는 허리가 생명
-
발뻗잠 3
-
덕코 받고 싶다 6
-
목시 강기원 들을 건데 피시방가서 해야하나 강기원 30초컷이라던데 맞음?
-
블라글 지워주실 수 있을까뇨,,
-
글젠은 없다니
-
우흥
-
ㄷㄷㄷㄷ
-
현지에서 살다온 사람들은 무슨 지랄을 떨어도 이길 수 없음
-
밖에서 무ㅜㄴ소리가났는디 지금 3시33분에다가 지금밤새는데 무섭고 아니 하 디지라칸다
-
전과목 고정백 12
국어 고정백은 어딘가에 잇다수학 고정백도 좀 잇다 영어 고정백도 아마 잇을...
-
수학 실수만 안했다면 영어 하나만 맞췄다면 물리 실수만 안했다면 생명 비유전만 맞았다면 ㅋ.ㅋ
-
오르비ㅈㄴ좁다 6
같은동네사는사람1명 5년전에같은커뮤했던사람1명 트위치 방송 챙겨봤던 사람 1명 을...
-
최근에 여대 인식 안좋아지고 있다는 말은 좀 그런게 0
ㅁ갈리아가 나오지 않았던 2000년대에도 이미 욕먹고있었음 찾아보니까 그때도...
-
제 롤닉은.. 12
본명 쓰는 중임뇨
-
애드웨어 많이 걸렸는데 시도때도 없이 11번가 g마켓 팝업 뜸
-
지옥 1시간동안 블레이즈 구경도 못함
-
마크 국룰 버젼 6
1.5.2 도능1.7.10 모드1.8.9 pvp
-
잘자 8
예쁜 내 프사 업로드
-
다음기회에
-
오랜만에 마크 4
재밌었다
-
강기본 -> 강기분
-
실친이없음
-
1년동안 사람 안을 기회가 없었다 손 들어잇
-
뉴비 오프닝 6
백일 때 스카치갬빗흑일 때 상대 e4면 오픈게임 상대 d4면 잉글런드 갬빗해요....
-
마크도 공부해야 1등급 나오겠네
-
3시자는사람은나약함
-
ㅇㅈ합니다 3
팜하니나 보고 가라
-
할거추천받아요 6
ㅠㅠ
-
정시의벽<< 못생긴 거 알고 절대 인증 안 함
-
현우진 시발점 2
20분동안 1번에서 19번까지 15번 빼고 다 풀었는데 시발점 들어야할까요? 예비고3입니다
-
미쳤네 근데 이러면 413~416 다 튀어버리고 꼬리 멸망해서 실지원 후 최종컷은...
-
저번 그 사람 보고나서 절대 못하겟슴 ㅋㅋ
-
대학 2급 오르는정도라는데 진짜에요?
-
수락 안하는게 나음?
3번 맞나요?
풀어줘서 고마워요
우와 맞았다! 재밌는 문제 감삼당
삼각형 OBQ에서 sin법칙으로 선분 OQ, BQ 길이 나타내기
f(x)=1/2*1^2*(2x)-1/2*sin(x)/sin(3x)*1*sin(2x)=x-sin(x)sin(2x)/[2sin(3x)]
정사각형의 꼭짓점 중 선분 BQ 위에 있는 점을 S라 할 때 선분 RS를 연장하여 직선 RS를 그리고 점 P에서 선분 AB에 수선의 발 H을 내렸을 때
직선 RS와 선분 PH의 교점을 T라 하자. 이때 삼각형 RSP의 넓이는 선분 PH의 길이에서 정사각형의 한 변의 길이를 뺀 값에 선분 RS의 길이를 곱하여 2로 나눈 값과 같다.
삼각형 QOB와 삼각형 QRS가 AA 닮음이고 정사각형의 한 변의 길이를 a라 할 때 a/tan(2x)+a+a/tan(x)=1에서 a를 x에 관해 나타낼 수 있다.
g(x)=1/2*a*[sin(2x)-a]-1/2*a*a*sin(x)/sin(3x)
이제 열심히 극한 계산 해주면 되겠지만... 답만 내고 싶으니 대충 x가 0에 충분히 가까울 때로 근사해주면
f(x)~2x/3
g(x)~x-2/3
따라서 f(x)-g(x)~-x/3+2/3
극한이 발산하는 것을 보니 근사 과정에서 문제가 있는 듯하지만 일일이 계산하기 귀찮으니 다음 시간에
- 원주각과 중심각
- 직각삼각형에서의 길이 표현
- 닮음
- sin법칙
- A를 (A+b)-b로 바라보기
- 삼각함수 극한 계산
...
등을 모두 복습할 수 있는 좋은 문항 같습니다! 직접 만드신 것인가요
네 제가 만든 문제입니다! 풀이 잘 읽었어요(g 식에 작은 삼각형 식에서 sin2세타가 빠진듯) 평가 너무 감사드립니다. 아래는 예전에 작성했던 해설입니다. 적어주신 풀이가 정석이고 예전 평가원 문제랑 비슷한 느낌으로 함수의 차를 직접 구할 수 있습니다!
감사드립니다!! 확인해보겠습니다