2024학년도 수능 수학 소위 킬러문항 사례
24수능 킬러문항 사례 (책참) 초본.pdf
2023년 6월 교육부 킬러문항 사례.pdf
잠도 안오고 집에도 가고싶고 해서
전문성은 없지만 그럴싸해보이는
문서 하나 작성해봤습니다.
지난 6월 교육부가 발표한
킬러문항 사례 문서 참고했습니다.
재밌게 봐주시고 반박 시 당신이 맞습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
끝났나 1
진짜 오래 하시네 방음 안 되는 원룸인 걸 잊으셨었나 ㅋㅋㅋㅋ
-
이 순서대로 정주행하기
-
인생이 노잼이다보니 노잼인간이 되.
-
걍모든과목이좆됨 개념을 봐도 딱짚어서 틀리기전까진 개념을 아는게아닌거같음 근데...
-
내년 과탐 추천 4
현재 물1 화1입니다 내년에 화학은 아무도 안할거같아 탈출하려고 합니다 화1 대신...
-
30강짜리는 못 들을거같고 2,3점만 다 맞고싶은데 이런 사람을 위한 강의 있을까요??
-
다들♥ 9
ᶠYͧoͨᵏu
-
방에 책상이 없고 거실 식탁만 있으면 집공은 불가능임? 5
부모님이 시끄러운 환경에서 공부하는 훈련도 해봐야된다 주의시라 대신 TV는 없고 책장이긴 함
-
오르비 참기 개힘드네
-
모든걸 공개하겠습ㄴ다
-
나도질받할래 4
안해주면울어
-
상상이 후반회차 딱 그렇게 내려고 하는 거 같은데
-
걍 감잡으려고 김종익 잘파모랑 현돌모 시즌1 세움모 이상모 날개 산촌여정 풀었음
-
문제 난이도는 둘이 비슷하고 개념양이나 외워야 하는건 사문이 훨적은거같네
-
오르비 노잼이네..
-
왜 그런걸까 ㄹㅇ 이유가 뭐지
-
3차원 구 그려서 구의 중점으로부터 거리로 보는 거 맞나요?? ㅈㄴ 어려움ㅋㅋㅋ
-
너무 적나라하게 잘 들리는데
-
자기 전에 심심해서 생윤 문제 개념 등등 질문받아요 댓 달리는대로 답변해드림
-
캐롤들으면서공부 2
-
니들이 한 그릇 6천원하던 시절 국밥의 낭만을 아느냐 돈이 궁했던 시절 매일같이...
-
체력적으로 딸린다고 느낀 적이 없었는데 하루에 믈리실모 5개 풀어서 그런가 뒤질 것...
-
다들 자라 11
거북이
-
여기까지 오고싶어서 온 건 아닌데
-
질받 21
암거나 다 ㄱㄱ
-
미국의 성씨 Trump는 원래 독일계 성씨 Drumpf에서 유래했다고 하네요
-
개맛없네
-
5합 226이라 일단 O스퍼거는 아님
-
맞팔9 5
실테로 돌아가야겠어
-
완료 혹은 강제 종료 되었다 해방이다
-
국밥 제육 김치찌개 돈까스 햄버거 제가 생긴건 안 그래도 입맛은 상남자임 돈까스...
-
단순 궁금증!
-
소설 쓰기 어떻게 입문해보먄 좋을까여 플롯 짜기 이런거 좀 디테일하게 알아보고 싶음...
-
킥오프 본책 + 워크북 vs 킥오프 본책 + 기생집 2,3점 둘중에 추천...
-
진짜 내용이 별로 없는 파트라서 뭘 정리해야할질 모르겠음 롤스나 정리할까
-
올해 수능 미적 0
3컷이 70점대일 확률도 있나여??대충 6모정도 난이도라고 했을때
-
이렇게 스티커 다시 만들어줘
-
6시에 살껄 체결 안되길래 걍 안했는데
-
영어황분들 3
평가원 1 뜨시거나 변동이신 분들은 영어 실모도 1 뜨시나여 평가원 1~2 변동이고...
-
자연상태에서 소유권에 대한건데 홉스는 자연상태에선 소유권이라고 부를 만한 것이...
-
수학 찐노베 1
수시 6광탈한 후 쌩재수를 하게 됐습니다 정시 공부는 아예 해본 적 없는 상태에서...
-
다른 분들 후기 보고 재밌어보여서 저도 풀고 후기 써봅니다! 1. 점수: 88...
-
사람들이 생각하는 사문 킬러 '진짜 킬러'
-
미적 개념하고 잇는데 그냥 궁금
-
이감 파이널 8,9,10 회차 중 2개 or 서킷 22,23,24 모두 두가지 다는...
-
예에전에 썼다 지운 글 재탕 사건 당시 필자는 초5 잼민이였음 근데 이제 잡지식 좀...
-
걍 오개념 없는 곳이 없음 난 그래서 ebs 사설 이런거 걍 그런갑다 하고 기출만...
솔직히 241122는 역대 22번 중 제일 joat라고 생각
개인적인 선호도가 낮다는 뜻? 어렵다는 뜻? 공부할 가치가 없다는 뜻?
문제 자체가 별로임
더럽다고 해야하나
저는 190630(나) 문항 (나) 조건 느낌 오랜만에 받아 좋았는데 네모 박스 조건부터 해석하고 주어진 미분계수 조건 2개 적용하려면 f(x) 개형을 수십개를 그려봐야 상황 파악이 가능하다 느꼈습니다, 220622처럼 위에서부터 순서대로 정보 처리해도 정답 상황을 충분히 경우의 수 분류해낼 수 있도록 출제했어도 좋지 않았을까 하는 개인적인 감상
f(x) 개형 찾고 조건 충족 확인 -> 틀리면 반복
이 과정이 너무 많이 필요했어서 현장에서 멘탈 갈리기만 좋은 문제였던 거 같아여 별 의미가 있는 거 같지도 않고
실제로 경우의 수 5-6개 하다가 안 돼서 제가 그랬고...
저는 현장 응시는 못했지만 개형 한 10개 그려봐도 도대체가 조건을 언제 만족하는지 모르겠길래 한 달 가까이 방치해뒀었네요 ㅜㅜ 미분계수 조건부터 바라보아 -1/4, 1/4라는 수의 특수성에서 ..., -1, 0, 1, ...의 특수함을 발견하는 것이 아니면 현장에서 답 내기 현실적으로 어려웠다 생각합니다
오히려 역대 22 중 가장 수능의 정의에 가까운 문제 아니었나 싶은데요
조건이 쓸데없이 더러운 것도 아니고 추론도 많이 요구하고
헉
팩트)
미적29처럼 미지수가 4개인 연립일차방정식은 교육과정에서 다루지 않음
애초에 3개인 것도 안다룸 ㅋㅋ
킬러문항의 기준은 A이다 --> 왜 대통령실 말과 다른가?
킬러문항의 기준은 B이다 --> 24수능에도 존재하지 않는가?
비슷하게
위급 상황이었다 --> 왜 부산대 병원에서 수술을 받지 않았나?
위급 상황이 아니었다 --> 왜 응급 헬기를 탔나?
'마포꽃섬'으로 알고 있습니다! 서울시 마포구에서였나 서울시에서였나 제작했던 것 다운받은 거로 기억해요
검색해 보았는데, 극좌표계에서 영역 구할 때 넓이를 구할 수 있다고 하는데
그러면 이걸로 확률밀도함수를 적분하는건가요?
(진짜 모름)
우리가 보통 사용하는 직교 좌표계, 데카르트 좌표계에서의 적분을 극 좌표계에서의 적분으로 바꾸는 방법이고 상황에 따라 계산을 더 쉽게 혹은 가능하게 할 수 있습니다.
직교 좌표에서 (x, y)로 나타내어지는 점은 극 좌표에서 (r*cos@, r*sin@)로 나타내어집니다. r은 직교 좌표 상에서의 주어진 점과 원점 사이의 거리이고 @는 원점과 x좌표가 양수인 x축 위의 점을 이은 선분으로부터 시계 반대 방향으로 잰 원점과 점 (x, y) 을 이은 선분까지의 각의 크기입니다. (표현이 정확할지 모르겠는데 수학1에서 일반각 정의하는 그 느낌)
이를 이용해 다음과 같은 연산이 가능합니다!