[칼럼] 고등수학의 연산에서 가장 중요한 한 가지!!
안녕하세요. Math Changer 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 고등학교 수학의 "연산에서 가장 중요한 한 가지"에 대해 포스팅 해볼게요!
고등학교 수학의 연산에서 가장 중요한 것은 무엇일까요? 한 번 생각해 보세요!
이를 알고 여기에 초점을 맞추고 공부한다면 고등학교 수학이 한결 쉬워질 거에요. 안정적인 1등급을 받는 데에도 큰 도움이 될 거에요 :)
다음은 각각 초등학교와 중학교 과정의 연산 문제입니다.
초등학교와 중학교에서는 "연산을 숙달하는 것"이 학습 목표이기 때문에 위와 같이 복잡한 계산을 요구하는 문제가 직접 출제됩니다.
하지만 고등학교 수학에서는 위와 같이 "세 자리 자연수의 곱셈"이나 "유리수 9개를 사칙연산 규칙에 따라 일일이 계산"하는 문제는 출제되지 않습니다.
그럼 고등학교 수학에서는 어떤 문제가 출제 될까요?
고등수학에서는 위와 같이 표면적으로는 매우 복잡해 보이지만, 배운 것을 통해 '간단히' 할 수 있는 문제들이 출제 됩니다. 이때,
"복잡한 것을 간단히 하는 도구"
에 초점을 맞추고, "어떤 도구를 사용하는지, 복잡한 식이 어떻게? 왜? 간단해 지는지" 공부해야 합니다.
(물론 [문제2]는 대충 풀어도 쉽게 풀 수 있는 문제입니다. 하지만 쉽고 익숙한 문제에서부터 연습하지 않으면, 생소하고 어려운 문제를 제대로 풀지 못할 것입니다! 쉬운 문제에서부터 제대로 연습해야 합니다!)
[문제2]의 (1)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구이고, (2)는 항의 수를 줄이는 도구입니다. 이를 이용하면 허수단위 i에 대한 복잡한 연산도 쉽게 할 수 있습니다. 이를 이해하고 올바르게 적용하는 것이 중요한 학습 목표이기 때문에 시험에도 자주 출제되는 거겠죠?
[문제2]의 (2)에서는 다음 정리를 사용합니다.
위 정리의 (1)은 차수를 낮추는 도구겠죠? (2)도 마찬가지입니다. (2)를 이용하면 이차식을 일차식으로 바꿈으로써 차수를 낮출 수 있게 됩니다. (3)은 항의 수를 줄이는 도구겠죠? :)
이를 이용하면 w에 대한 복잡한 연산도 간단히 할 수 있겠죠? 이것 또한 중요한 학습 목표이기 때문에 시험에 자주 출제가 되는 것입니다!
그렇다면 [문제2]의 (3)은 어떨까요? 주어진 x를 정리하면 다음과 같은 식을 얻을 수 있습니다.
(i, w와 같은 이유로) 왼쪽의 식은 항의 수를 줄이는데, 오른쪽 식은 차수를 낮추는데 유용하겠죠? 이를 이용하면 [문제2]의 (3)도 쉽게 풀 수 있습니다!
물론 [문제2]는 쉽게 유형화 가능합니다. 중상위권 이상이라면 이 정도는 시간이 지나도 쉽게 맞힐 수 있습니다. 하지만 다음 문제는 어떨까요?
[문제3]은 "2021학년도 수능 수학 가형(이과)의 객관식 마지막 문항"입니다. (물론 킬러 문제 치곤 쉽게 출제된 문항입니다!)
하지만 이 문제도 [문제2]에서 연산을 간단히 하는 도구에 초점을 맞추고 공부한 학생이라면 매우 쉽게 풀 수 있습니다.
[문제3]의 (가)로부터 2n을 n, 2로!
[문제3]의 (나)로부터 2n+1을 n, 2로!
임을 이용하면, 주어진 항을 모두 첫째항과 둘째항으로 나타낼 수 있기 때문입니다! (8, 15를 1, 2로 나타내면 끝!)
[문제2]의 차수가 [문제3]에서 항 번호로 바뀐 것 뿐입니다! 문제에 주어진 모든 항을 첫째항과 둘째항을 이용해 나타내기만 하면 [문제3]도 쉽게 풀 수 있습니다 :)
다항식에서 인수정리가 중요한 것도, 함수의 합성에서 항등함수와 역함수가 중요한 것도, 미분과 적분의 역연산 관계가 중요한 것도 모두 복잡한 연산을 간단히 하는 도구이기 때문입니다!
복잡한 것을 있는 그대로 복잡하게 계산하는 것은 고등학교 수학의 학습 목표가 아닙니다. 복잡한 연산을 어떻게 간단히 할 수 있는지에 초점을 맞추고, 무엇을? 어떻게? 왜? 간단히 할 수 있는지 신경 써서 공부할 것을 강력하게 권장합니다! 이것이 중요한 학습 목표이자 수학의 본질이기 때문입니다. 이를 통해, 본질이 무엇인지 깨닫게 되면~ [문제3] 또는 이보다 생소한 고난도 문제를 시험에서 처음 마주하더라도 쉽게 풀 수 있을 것입니다! (기계적으로 답을 맞히는 공부를 한다면 시험에서 생소한 형태의 고난도 문제에서 크게 당황할 가능성이 높습니다. 안정적인 1등급도 어렵겠죠?)
그럼 오늘 포스팅은 여기서 마치도록 할게요. 다음에 또 만나요! :)
PS. 연산에 대한 보다 자세한 설명과 구체적이고 다양한 예시가 궁금하시면 다음의 전자책을 읽어보세요!
"서울대 박사가 알려주는 수학의 비밀 - 세 번째 비밀 : 연산"
[오늘의 칼럼 요약]
: 고등학교 수학의 연산에서의 학습 목표는 "복잡한 연산을 간단히 하는 것"입니다. 복잡한 연산을 간단히 하는 도구에 초점을 맞추고, 그것이 무엇을? 어떻게? 왜? 간단히 하는지 공부할 것을 강력하게 권장합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
英 노동당의 좌파 본색…세금 이어 대학 등록금까지 올려 1
내년부터 英 대학 등록금 1700만원으로 필립스 교육장관 “2017년 이후 첫...
-
걍 미친듯이 달리면서 불안함을 잊는거야
-
난이도 어떰? 시즌 1 1회 82점인데 국어 고인물들 1,2컷 예상좀 해주세요ㅜㅜ
-
예비고3 이고 겨울방학 국영수 생지 단과 추천좀 해주세요 10모 국어 높2 영어...
-
여름내 << 이거 부사인거 어떻게 바로 앎? '-내' 부파접인걸 알고있어야하나
-
이투스 11월 0
오늘 국어 보신분? 난이도 어땠나요
-
화작시간에는 시청각자료실로 텔레포트해서 전문 배우의 발표를 들으며 시험을 치고...
-
남은 디데이보다 6
남은 실모 개수가 더 많아요 살려줘
-
이감 점수 2
이감 파이널 쭉 푸는데 보통 70점초중반이면 못하는건가? 이감 70점인사람들...
-
미치겠네 혀 깨물고 뺨 때리고 허벅지 꼬집고 일어서서 찬물 마셔도 조금있으면 잠 온다..
-
본인 인생 제대로 이뤄낸게 없어서 수능 쳐서 높은 대학 갈거라는 마음만 다짐하고...
-
이감 상상 0
이감 6-8 6-9 상상 5-4 5-9 중에 하나 못 풀 것 같은데 어떤거 빼는게 좋을까요?
-
왜 편지 없냐...ㅜㅜ
-
.
-
심찬우쌤 김유정 만무방 다뤄주신 강의 아시는 분잇나여
-
여성에 7번 차이고 인형과 결혼…日남성 6년 후 깜짝 근황 5
여성에게 7번 차인 끝에 인형과 결혼한 일본 남성이 결혼 6주년을 앞둔 근황을...
-
십덕씩드릴게요
-
메카니카 0
지금 메카니카 기출편이랑 기존에 있던 메카니카 역학편이랑 같은 건가요?
-
삼수생 3
안녕하세요... 제목 그대로 04 삼수생 입니다 너무 심적으로 힘들어서 글이라도...
-
햄버거와 구분할수 없다.
-
오늘 일어나서 인스타켰는데 갑자기 로그아웃되더니 로그인이 안됨 설마했는데 역시...
-
사이트 진짜 왜이럼 공부를 할 수 있게는 해줘야할거아냐...
-
이번 미적27번 0
어떻게 나올거 같으세요? 작수만큼 나올까요?
-
컴공은 코딩을 하는 곳이고, 무조건 코딩을 잘해야한다? > x 컴공은 코딩을...
-
그래서 힘과가속도 저울재는것도 가끔찍음,,,,,,,
-
수학 질문 4
0<AB의 기울기<1/4인데 ㄴ. 0<AB의 기울기<=1/4이다 는 틀린 선지 아니죠?
-
100분 96(30번) 근데 30번만 20분정돈 봤는데 모르겟네요 원래는 해설...
-
올해 학교에서 정식으로 친 모고들 국수영 등급 조합 계속 바뀜.. 실력이 없으니...
-
13회 중 50점 3번 45점 2번 나머지 전부 47/48점.. 만점 진짜 너무너무...
-
아모르겠다 1
수탐잘보면 뭐 어떻게든 만회되겠지...
-
아이폰 17 이벤트 당첨되셨습니다. 진짜임. 빨리.
-
너무 스트레스 받아서 밤에 불냉면 2단계 먹음... 이제 불똥쌀 마음의 준비중..
-
광고 없어지니까 삶의질이 떡상함 멜론도 쓰던거 해지하고 유튜브 프리미엄으로 쓰는중
-
서울시립대 말고도 인천시립대라고 해서.... 그 시절에는 있었었지요
-
작두 목록 나왔나요?
-
사실 독서풀때 30분밖에 안남음ㅛ.....
-
이퀄 수학 0
풀어볼만한가요?
-
시대 단과 미적 0
시대 3대장 강김박 쌤들 미적 정규반 들으면 수1, 수2, 미적 다 하는거에요?...
-
상상 파이널 0
70후-80초가 대부분인데 수능에서 몇정도 뜰까요… 2만 떴으면
-
아이 ㅅ발 1
국어 또 나만 처망했네 레전드억제기진짜 항상 내 앞길을 가로막아 후기글 보면 죄다...
-
언매 선택자이고 낮1 높2 목표, 극마지노선은 3초 입니다 원래 풀이 순서는...
-
나중가서 개털릴까봐 급하게 십지선다사문이랑 현돌 다지선다 주문함 ㅋㅋ;;
-
반타작 해도 해설 들으면 깔끔하게 내가 틀린거라 할 말이 없어서 더 비참함
-
고3 올라오고 교육청 평가원 모의고사 항상 1이었는데 뭔 실모풀면 2,3등급 뜨니까 엄청불안해짐
-
90이다... 와..
-
10, 25 틀 96 독서 9:23(43분) (가),(나)지문이 상대적으로 쉬웠고...
-
화작 왤케 지랄맞아 화작에서 4개 나간 건 처음이네 ㅅㅂ ㅋㅋㅎㄹㅎㅋㄹㅋㅋ
-
강k로 간다
-
어렵지않나요..? 5회 문학3틀인데 서술상특징 문제만 다틀림 뭔가 턱턱걸리고 답도...
다음은 저의 홈페이지 및 블로그 링크입니다 :)
홈페이지 https://www.soogangmath.com
블로그 https://blog.naver.com
[문제2]의 (3)에서 "x=1-루트2"인데, 오타가 있었네요!