무브
오르비
아톰
내 태그 설정
푸른 하늘과 이상 [1187425] · MS 2022 · 쪽지
게시글 주소: https://roomie.orbi.kr/00063337533
이 문제 또한 겨울때 만든건데 잘만든 것같아서 올립니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
쪽지 보내기
알림
스크랩
신고
56인가용
개형파악이 좀 빡셌고 맛있게 잘먹었습니다!!
아 자야하는데 못참고 풀어버렸네
히히
빨리 푸느라 안되는 개형 엄밀히 안따지고 풀었는데 f'(a5)>0 조건이 없으면 개형이 여러개 나오나 보네요..!
이렇게 되기에 넣었습니다 히히
f'(a6)=0을 만족 안해서 어차피 탈락
역시 rivi님 ㄷㄷ 사실 f'(a6)>0으로 했다가 케이스가 너무 많아져서 안하게 되었네요 ㅋㅋㅋㅋ
f'(a6)=0 -> 교점 3 or 2 3경우 만족 x 2만족 f=t(x+1)(x-3)^3+7 t=7/27 문제가 참 맛있네요
이번수능 끝나고 문제나 같이 만드실래요?
어떻게품?
이거 맞는지모르겟는데 그래프안보여서 무지성수식넣엇는디 어떻게푸나요
아 아니네 내가쓴게틀렷네
아 합성함수 접근법 말씀하시는 건가요? f(f(x))=f(x)에서 f(x)=t로 치환하면 f(t)=t가 되는데,이때 형태가 f(x)=x랑 같은 형태잖아요? 그래서 f(x)랑 x를 그려 판단하는 것입니다.이때 f(x)와 x가 만난다고 했을때 x축과 평행한 직선을 그어 실근을 파악합니다 왜 이렇게 파악하느냐면f(x)=t이기 때문입니다. (왜이렇게 되는지는 좀더 고민하시는 것이 공부에 도움될 것입니다.) 어쨋든 f(f(x))=f(x)의 형태는 y=x와 y=f(x)가 만나는 교점,그리고 그 만나는 점에 대해 x축과 평행한 직선을 그어 실근을 파악하는 식입니다
그 f7 이 7이 왜안되는거에요
방정식이기에 막 집어넣을수 없습니다 만약 모든 실수 이거나 구간별로 정의된 함수였다면 넣어서 파악하는게 가능합니다
f3=7 이니까 성립하려면 f7=7 도 되지않나요
모든 실수가 아닌 방정식이라서 f(3)=7이라고 해서 f(7)=7이 나타나는 것은 아닙니다 만약 모든 실수에서 f(f(x))=f(x)가 성립되었다면 f(7)=7이 맞습니다
아 이해됐어요 ㄱㅅ합니다 솔직히 이해못햇음 f7=7 맞는거아닌가 제생각엔 오류같음
옹 내일 한번 풀어보겠슴다
개형 못찾게쒀여,,포기
특수일때가 답입니다!!(1:3)
문제에 오류가 있는것같아요.. x=3 이 본 방정식의 해 라면 f(f(3))=f(3) 을 만족해야하므로 f(7)=7 입니다. 만약에 f식이 7/27(x+1)(x-3)^3 +7 이라면 f(7)=7 이 성립할수없으므로 모순, 즉 문제의 조건과 맞지 않습니다.
오류맞죠
네 오류임 헷갈리지마세요
본인의 방식으로 안풀린다고,그래서 문제오류라고 하는 것은 편협한 사고입니다
태리님이 말씀하신 것은 후건긍정의 오류입니다 따라서 제 문제엔 오류가 없습니다
네?? 도대체 어디서 오류라는거죠… 방정식의 실근이 주어지면 식에 대입하는건 당연한 행동인데 .. ㅋㅋ 당연한 상식을 눈가리고 아웅하지마세요
태리님이 말씀하시는 방식자체가 후건긍정의 오류라는 겁니다 네이버라든가 구글에, 후건 긍정의 오류를 검색해보시면 알겁니다 그리고 방정식의 실근이 f(7)=7이라고 언제 그랬나요? 제 눈이 문제있는 건가요? 전 서로 다른 실근중 7이 있다고 한 적 없습니다 문제 정확히 읽고 비판하시길
아니 방정식의 실근이 3이라고 했잖아요 지문에서. 어떤 방정식의 실근이 3이면 그 방정식에 x=3 을 대입했을때 성립한다. 라는 명제가 어떻게 참이 아닐수 있냐구요
다시 차분하게 문제를 한번 읽어보세요
제가 만든 문젠데 제가 모를리가요 f(3)=7이라고 했지 f(f(x))=f(x)라는 방정식에서 x=3을 대입하면 f(7)=7이 결과적으로 나타난다고 한적 전혀없습니다
이 방정식은 모든 실수에서 성립되는 것이 아닌 것이기 때문에 막 대입할 수 없습니다
f(3)=7 이고 x=3 이 저 방정식의 실근인 순간 f(f(3))= f(3) 인건 동의하시나요?
좀이따 쪽지로 하시는 건 어떤가요?
"방정식 f(f(x))=f(x)가 서로 다른 실근 7개를 갖는다. 이 7개의 실근을 순서대로 ... 라 할 때, A6=3이고, ...." -> 방정식 f(f(x))=f(x) 의 실근 중 x=3이 있다. -> f(f(3))=f(3) 이다. 에서 결과적으로 f(7)=7이 도출되므로 오류가 맞습니다.
별개로 문제는 잘 봤습니다!
동의합니다 a6=3이기에 오류가 되네요
감사합니다!!
의대가말하니까 바로 수긍하는거보소
윗분은 그렇게 말안했는데요 그리고 님도 a6=3이기에 f(7)=7이라고 생각하시고 지적하신건가요? 전 옳다면 받아들이는 편입니다. 의대라서가 아니구요. 미네님이 정확하게 말씀하여 오류를 지적해주셨으니까 제가 받아들인 것뿐입니다.
2026 수능D - 290
수능 국어/영어 만점자,시대인재TA
서울대 지리쌤
자신있으니까 합니다
정시전문 과외 구합니다.
서울과학고 한양대의대 / 수학 과학 내신, KMO, 영재고 입시
1:1 맞춤과외 내신/수능대비
56인가용
맛은 어땟나요?
개형파악이 좀 빡셌고 맛있게 잘먹었습니다!!
아 자야하는데 못참고 풀어버렸네
히히
빨리 푸느라 안되는 개형 엄밀히 안따지고 풀었는데 f'(a5)>0 조건이 없으면 개형이 여러개 나오나 보네요..!
이렇게 되기에 넣었습니다 히히
f'(a6)=0을 만족 안해서 어차피 탈락
역시 rivi님 ㄷㄷ
사실 f'(a6)>0으로 했다가 케이스가 너무 많아져서 안하게 되었네요 ㅋㅋㅋㅋ
f'(a6)=0 -> 교점 3 or 2
3경우 만족 x 2만족 f=t(x+1)(x-3)^3+7
t=7/27
문제가 참 맛있네요
이번수능 끝나고 문제나 같이 만드실래요?
어떻게품?
이거 맞는지모르겟는데
그래프안보여서 무지성수식넣엇는디
어떻게푸나요
아 아니네 내가쓴게틀렷네
아 합성함수 접근법 말씀하시는 건가요?
f(f(x))=f(x)에서 f(x)=t로 치환하면 f(t)=t가 되는데,이때 형태가 f(x)=x랑 같은 형태잖아요?
그래서 f(x)랑 x를 그려 판단하는 것입니다.이때 f(x)와 x가 만난다고 했을때 x축과 평행한 직선을 그어 실근을 파악합니다 왜 이렇게 파악하느냐면f(x)=t이기 때문입니다. (왜이렇게 되는지는 좀더 고민하시는 것이 공부에 도움될 것입니다.)
어쨋든 f(f(x))=f(x)의 형태는 y=x와 y=f(x)가 만나는 교점,그리고 그 만나는 점에 대해 x축과 평행한 직선을 그어 실근을 파악하는 식입니다
그 f7 이 7이 왜안되는거에요
방정식이기에 막 집어넣을수 없습니다 만약 모든 실수 이거나 구간별로 정의된 함수였다면 넣어서 파악하는게 가능합니다
f3=7 이니까 성립하려면 f7=7 도 되지않나요
모든 실수가 아닌 방정식이라서 f(3)=7이라고 해서 f(7)=7이 나타나는 것은 아닙니다 만약 모든 실수에서 f(f(x))=f(x)가 성립되었다면 f(7)=7이 맞습니다
아 이해됐어요 ㄱㅅ합니다
솔직히 이해못햇음 f7=7 맞는거아닌가
제생각엔 오류같음
옹 내일 한번 풀어보겠슴다
개형 못찾게쒀여,,포기
특수일때가 답입니다!!(1:3)
문제에 오류가 있는것같아요.. x=3 이 본 방정식의 해 라면 f(f(3))=f(3) 을 만족해야하므로 f(7)=7 입니다. 만약에 f식이 7/27(x+1)(x-3)^3 +7 이라면 f(7)=7 이 성립할수없으므로 모순, 즉 문제의 조건과 맞지 않습니다.
오류맞죠
네 오류임 헷갈리지마세요
본인의 방식으로 안풀린다고,그래서 문제오류라고 하는 것은 편협한 사고입니다
태리님이 말씀하신 것은 후건긍정의 오류입니다
따라서 제 문제엔 오류가 없습니다
네?? 도대체 어디서 오류라는거죠… 방정식의 실근이 주어지면 식에 대입하는건 당연한 행동인데 .. ㅋㅋ 당연한 상식을 눈가리고 아웅하지마세요
태리님이 말씀하시는 방식자체가 후건긍정의 오류라는 겁니다 네이버라든가 구글에, 후건 긍정의 오류를 검색해보시면 알겁니다
그리고 방정식의 실근이 f(7)=7이라고 언제 그랬나요? 제 눈이 문제있는 건가요? 전 서로 다른 실근중 7이 있다고 한 적 없습니다 문제 정확히 읽고 비판하시길
아니 방정식의 실근이 3이라고 했잖아요 지문에서. 어떤 방정식의 실근이 3이면 그 방정식에 x=3 을 대입했을때 성립한다. 라는 명제가 어떻게 참이 아닐수 있냐구요
다시 차분하게 문제를 한번 읽어보세요
제가 만든 문젠데 제가 모를리가요
f(3)=7이라고 했지 f(f(x))=f(x)라는 방정식에서 x=3을 대입하면 f(7)=7이 결과적으로 나타난다고 한적 전혀없습니다
이 방정식은 모든 실수에서 성립되는 것이 아닌 것이기 때문에 막 대입할 수 없습니다
f(3)=7 이고 x=3 이 저 방정식의 실근인 순간 f(f(3))= f(3) 인건 동의하시나요?
좀이따 쪽지로 하시는 건 어떤가요?
"방정식 f(f(x))=f(x)가 서로 다른 실근 7개를 갖는다. 이 7개의 실근을 순서대로 ... 라 할 때, A6=3이고, ...."
-> 방정식 f(f(x))=f(x) 의 실근 중 x=3이 있다.
-> f(f(3))=f(3) 이다.
에서 결과적으로 f(7)=7이 도출되므로 오류가 맞습니다.
별개로 문제는 잘 봤습니다!
동의합니다 a6=3이기에 오류가 되네요
감사합니다!!
의대가말하니까 바로 수긍하는거보소
윗분은 그렇게 말안했는데요 그리고 님도 a6=3이기에 f(7)=7이라고 생각하시고 지적하신건가요?
전 옳다면 받아들이는 편입니다. 의대라서가 아니구요. 미네님이 정확하게 말씀하여 오류를 지적해주셨으니까 제가 받아들인 것뿐입니다.