우함수, 기함수 적분 성질 증명
우함수는 정의역 내의 모든 x에 대해 다음을 만족하는 함수를 의미합니다.
그래프를 그려보면 y=f(x)의 그래프가 y축 대칭임을 확인하실 수 있을 것입니다.
기함수는 정의역 내의 모든 x에 대해 다음을 만족하는 함수를 의미합니다.
그래프를 그려보면 y=f(x)의 그래프가 원점 대칭임을 확인하실 수 있을 것입니다.
대칭성은 그래프 개형을 파악하거나 계산을 할 때 직접 해결해야할 양을 줄여주기 때문에 무언가를 할 때 항상 먼저 떠올리시면 도움이 될 확률이 크다고 말할 수 있겠습니다. 또한 꼭 함수에 관한 이야기를 하지 않더라도 확률과 통계 문항을 풀 때 경우의 수를 쉽게 구하려면 대칭성을 고려하는 것은 핵심적인 사고과정이라 말할 수 있겠습니다, 사실 합의 법칙과 곱의 법칙도 수형도의 뒷부분이 같냐 다르냐를 구별하는 것이기에 대칭성에 대해 잘 이해하고 있는지를 묻고 있다고도 생각해볼 수 있겠죠!
우리는 수학2에서 다음과 같은 성질을 공부합니다.
즉, 우함수면 x=0에 대칭인 구간을 잡아 적분하면 그것은 절반만 해서 2배한 값과 같고 기함수면 적분값이 0이라는 것이죠.
대충 y=x^6이나 y=x^7 정도 생각해보면 직관적으로 성립할 것임을 알 수 있습니다.
혹은 미적분의 기본 정리를 통해 직접 계산해보아도 증명할 수 있겠죠.
참고로 미적분의 기본 정리란 다음을 의미하며, 정적분의 정의는 미적분에서 구분구적법을 학습해야 엄밀하게 보일 수 있기 때문에 (물론 이 또한 극한을 이용한 것이라 정말 엄밀하게는함수의 극한을 제대로 정의하는 방법인 입실론-델타 논법을 공부해야하겠지만요) 저는 수학2에서 소개하는 정적분의 정의를 '미적분의 기본 정리 (the fundamental theorem of calculus)'라고 부릅니다.
자 그럼 우함수일 때부터 위의 적분식을 증명해봅시다. 우선 대칭성을 활용하기 위해 구간을 끊어주고
이제 f(-x)=f(x)를 활용해봅시다
미적분에서 학습할 수 있는 치환적분법으로 다음의 치환을 해주면
적분식은 아래와 같이 변하겠습니다.
자 이때 우리가 y와 dy에 y는 더미 변수 (dummy variable), 다시 말해 최종값에는 등장하지 않고 y 대신 아무거나 써도 상관없음을 알고 있으므로
뭐로 잡든 상관이 없을 것입니다. 그럼 편의상 x로 잡아봅시다. 이제 원래 적분식에 집어넣으면
임을 보일 수 있겠습니다. 우함수일 때 증명 끝! 이제 기함수일 때를 봅시다.
마찬가지로 대칭성을 활용하기 위해 구간을 나눠주고 대칭성을 활용해줍시다.
마찬가지로 -x=y로의 치환적분을 해주면 증명 끝입니다.
따라서 우리는 치환적분법을 활용해 우함수와 기함수를 적분할 때 적분 구간이 x=0에 대칭이면(?) 각 값이 특수하게 결정됨을 확인했습니다. 물론 닫힌 구간 [-a, a] 꼴에서 적분한다고 무조건 '오! 기함수 아님 우함수겠다'라고 생각할 수 있는 것은 아니지만 대부분의 경우 그렇게 먼저 의심했을 때 계산량이 확 줄어들더라구요 ㅎㅎ (특히 평가원, 수능에서)
학습에 도움이 되었으면 좋겠습니다!
p.s. 참고로 제가 오르비에 공유하거나 남기는 자료는 제 과외 목적 등으로 활용하기 때문에 글을 보시는 분들도 모두 무단 이용하셔도 상관 없습니다. 뭐 애초에 공개적인 웹에 내가 무언가를 남긴다는 것 자체가 누구든 확인할 수 있으니 사용해도 할 말 없다는 뜻이기도 하지만 말이에요 (법적으로 문제가 되더라도 본인이 공개한 이상... 몰래 쓰여도 할 말 없으니)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
너무 저능해짐.
-
자 0
자
-
라 2
라
-
잠이 안온다 0
으헝
-
강대 등급 제한 0
수업 선택제인데 등급에 3등급 이내라고 적혀 있는건 추천 등급인가요 아니면...
-
삼반수 2
미친 짓일까요? 현역때는 건동홍 낮과 ~ 국숭세단 중간과 정도 성적이 나왔고 이번엔...
-
올해 학종 2점대 중반? 초반은 아니라는데 그 형이 아주대 전자랑 경북대 전자...
-
부상자가 뭔..12명으로 리그 챔스 컵 다 돌려야하네..하.. 부상자가 8이 맞나 이거
-
님들 언제 잘꺼 4
안피곤함?
-
시대갤 다이소 1
겠냐?
-
수능공부 처음하는 예비고3이 지금 작수 기출을 풀어보는 게 의미가 있을까요? 동생이...
-
수능 영어만점 가능? The sliding motion of the piston...
-
반수 5
과기대에서 시립대 중앙대 정도면 어느정도성공인가요
-
한 작년 겨울방학 쯤 부터 커서 뭘 해야 할지 어떻게 살아가야 할 지 또 이건 말이...
-
ㅇㅈ 1
풍경
-
잠은 다잤네..
-
등록금은 둘다 고려 X 개국할지 제약회사로 갈지 미정 단대 장점 -인프라 굿...
-
어른돼서도 정치적 중립을 떳떳하게 말할 수 있게 투표권 아예 실시 안하겠다고...
-
세종대에선 찐따처럼 살지말거라~~!
-
우리에게는 아직 존재하지 않는 미래 세대에 대한 도덕적 의무가 있는가? 여기서...
-
계속 비슷한글 싸는데 음지로 꺼졋 ! ㅋㅋ
-
@sushimingham
-
이분 잘생김? 9
ㅇㅇ
-
잇올+단과로 생각중인데 단과는 수학만 할 예정입니다 단과는 어디가좋나요..??...
-
Midv -032 17
야밤의 품번추천
-
그럼 임시공휴일날 무시하고 그냥 발표하려나?
-
한석원의 1
-
지우가누구에요 3
?
-
자야징 7
ㅂ.ㅂ
-
4년?만인가 교사경+n제라 다들 양치기용으로 썼는데
-
ㅇㅇ?
-
10살때 일이었습니다. 피아노 학원 가기전에 아파트 단지에서 같이 놀던 여자애들이...
-
얼버기 9
갓생 8일차.
첫번째 댓글의 주인공이 되어보세요.