[이동훈t] 수학2의 출제 아이디어가 미적분에 이식 된 경우(2) (+211128가형) 수학2, 미적분
2024 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 지난 시간에 이어서
수학2의 출제 아이디어가
미적분에 이식 된 경우를 살펴보겠습니다.
[이동훈t] 수학2의 출제 아이디어가 미적분에 이식 된 경우 (+171130가형) 수학2, 미적분
위의 글에서는
(A) 초월함수가 인수 (x-a)를 직접적으로 포함한 경우를
다루었는데요...
오늘은 (B) 초월함수를 근사하였을 때,
(x-a)를 포함하게 되는 경우를 살펴보겠습니다.
다음은 2024 이동훈 기출 수학2 평가원 편
에 수록된 절댓값이 붙은 함수의
미분가능성에 대한 설명입니다.
이제 다음의 교육청 기출을 풀어볼까요 ?
그냥 딱 봐도. a=3 입니다.
이때, f(x)=| (x+3)^2 * (x-3) |
이고, 함수 f(x)는 x=-3에서 미분가능하고,
x=3에서 미분가능하지 않습니다.
이 문제를 풀 때
미분계수의 정의를
활용할 이유는 없었습니다.
(x-a)^n 에서
n이 2 이상의 자연수이면
x=a에서 미분가능함을
이미 알고 있기 때문입니다.
자. 이제 다음의 기출을 보실까요 ?
(이후의 글은
풀이의 일부를 포함하고 있으므로
문제를 풀고 나서 읽기를 바랍니다.)
다음은 2024 이동훈 기출 미적분
평가원 편의 해설입니다.
이 문제를 읽고 나서
위의 풀이의 붉은 칸 안의 식들을
3초 안에 생각할 수 있다면
안정적인 1등급/만점을 받는 수험생입니다.
만약 이 문제를
반드시 미분계수의 정의로
풀어야 한다는 ...
고정관념을 가진 분들이라면 ...
설령 1등급 이라도 ...
수능에서 안심하기 힘듭니다.
또한 ...
위의 풀이의 설명 정도는 ...
평소에 생각해두었어야 합니다.
안정적으로 만점을 받는 분들이라면요.
(수리논술 문제에서도 자주 다루고 ...
정석 같은 책에서도
한 번쯤은 생각하게 되니까요.)
위의 풀이를 좀 더 설명하면...
초월함수 g^-1(x)-a 를 다음과 같이 근사시키면
g^-1(x)-a = (x-1) * (함수)
함수 (x-1)|h(x)|는 x=1에서 미분가능합니다.
초월함수를
다항식을 포함한 함수로 근사시키는 것은
주로 삼각함수 또는 지수함수/로그함수의 극한에서
다루고 있지요. 예를 들어
x->0 일 때, sinx 는 x * (함수) 로 근사할 수 있고,
e^x - 1 도 x * (함수) 로 근사할 수 있습니다.
이런 함수들의 근사는 생각하기 쉽지만 ...
그 외의 초월함수를
같은 방식으로 근사시킨다는
생각은 잘 들지 않지요.
이렇게 평소에 잘 생각하기 힘들지만 ...
알고보면 별 것 아닌 것들을
수능에서는 즐겨 출제하고
있습니다.
자 ...
그렇다면
함수의 극한이 아닌
미분법에서 위의 관점이 또 출제될까요 ?
2~3년 안에 출제될 가능성이
매우 높다고
저는 생각합니다.
따라서 위의 발상과 이론은
꼭 정리해두길 바랍니다.
오늘도 화이팅 하세요 ~!
ㅎㅍ ~!
2024 이동훈 기출
2024 이동훈 기출 실전이론 목록
2024 이동훈 기출 문항수, 페이지 수
수학 칼럼 링크 ( 2024 수능대비 )
아래의 5 타이틀은 판매 중입니다.
2024 이동훈 기출 + 개념 수학Ⅰ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 수학Ⅱ 평가원 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매 중
2024 이동훈 기출 + 개념 미적분 평가원 편 36,000원 (오르비 할인가 32,400원) 판매 중
아래의 2 타이틀은 전자책만 출시됩니다.
2024 이동훈 기출 + 개념 기하 평가원/교사경 편 4월 중
2024 이동훈 기출 + 개념 확률과 통계 평가원/교사경 편 4월 중
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일본보다 중국이 싫다:우파 중국보다 일본이 싫다:좌파 이거같음
-
오르비 과외시장 선생님/학생 모두로 가입 가능해요? 0
계정연동이라 택일밖에 못하면 좀 곤란할 거 같은데
-
올해 벌써 20만 넘겼는데 왜케 점공률 낮은데가 많은 거지?
-
그냥 하고 싶은 거 하면서 만족하며 사는 게 최고라는 생각이 든다...
-
피셋 자료해석은 1
어지럽네 어지러워
-
토익 접수하려는데 혹시몰라서
-
대학만 생각하면 0
피해망상증 도지는데 어떡하냐 하 시발 복학할수있는 거 맞나
-
땅우? 맞나 그사람 도대체 어케가르쳤길래
-
반수할건데 전북대 등록금 210만원,기숙X vs 동국대wise캠 전액장학금,기숙100만원대 6
1학기학점도 안챙기고 수능공부할거면 닥 후죠? 괜히 돈 100만원 더 날리니..
-
애니보면서 오르비하다가 지금까지 못잠
-
하루종일 레알세 하느라 이제 들어왔는데
-
12시에 누웠는데 계속 잠이 안오길래 한 2시쯤 됐나 싶어서 일아났는데 4시 반임....
-
너무 저능해짐.
-
자 0
자
-
라 2
라
-
잠이 안온다 0
으헝
-
강대 등급 제한 0
수업 선택제인데 등급에 3등급 이내라고 적혀 있는건 추천 등급인가요 아니면...
-
삼반수 2
미친 짓일까요? 현역때는 건동홍 낮과 ~ 국숭세단 중간과 정도 성적이 나왔고 이번엔...
-
올해 학종 2점대 중반? 초반은 아니라는데 그 형이 아주대 전자랑 경북대 전자...
-
부상자가 뭔..12명으로 리그 챔스 컵 다 돌려야하네..하.. 부상자가 8이 맞나 이거
-
님들 언제 잘꺼 4
안피곤함?
-
시대갤 다이소 1
겠냐?
-
수능공부 처음하는 예비고3이 지금 작수 기출을 풀어보는 게 의미가 있을까요? 동생이...
-
수능 영어만점 가능? The sliding motion of the piston...
-
반수 5
과기대에서 시립대 중앙대 정도면 어느정도성공인가요
-
한 작년 겨울방학 쯤 부터 커서 뭘 해야 할지 어떻게 살아가야 할 지 또 이건 말이...
-
ㅇㅈ 1
풍경
-
잠은 다잤네..
-
등록금은 둘다 고려 X 개국할지 제약회사로 갈지 미정 단대 장점 -인프라 굿...
-
어른돼서도 정치적 중립을 떳떳하게 말할 수 있게 투표권 아예 실시 안하겠다고...
-
세종대에선 찐따처럼 살지말거라~~!
-
우리에게는 아직 존재하지 않는 미래 세대에 대한 도덕적 의무가 있는가? 여기서...
-
계속 비슷한글 싸는데 음지로 꺼졋 ! ㅋㅋ
-
@sushimingham
-
이분 잘생김? 9
ㅇㅇ
-
잇올+단과로 생각중인데 단과는 수학만 할 예정입니다 단과는 어디가좋나요..??...
-
Midv -032 17
야밤의 품번추천
-
그럼 임시공휴일날 무시하고 그냥 발표하려나?
-
한석원의 1
존경존경