오늘 3모 11번 도형 문제에서
저기로 수선의 발 떨구는게
필연이라고 봐야하나…
아님 발상이라고 봐야하나…
일단 60도랑 더하기꼴로 주어진건
굉장히 저 수선의 발을 어필하고 있는듯한데….
나는 풀면서 이 풀이는 좀 발상인가..? 싶었는데
님들 어케 풀었는지랑 의견이 궁금해요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㄹㅇ 많늠... 가끔 못 버틸만한 분들도 나옴 그래서 가끔 차단함
-
ㅇㅈ 2
전국 262등
-
맵 진짜 너무 많아졌네... 쓰던 캐릭터들도 퇴물된거 같고 ㅜㅜㅜㅜ
-
ㅋㅋㅋ
-
ㅇㅈ 5
눈만.
-
실전 모의고사 배틀을 하고 싶다. 오래된 꿈이다.
-
수능국어 1컷100 가능?
-
ㅅㄱ
-
1557 인증 11
더 돌리기 싫노
-
지방의에서 고대의로 옮긴대...그래서 나도 3수하고싶어졌러
-
저 분 귀엽네 9
사람 자체가 귀여움
-
이전까지의 연애들은 그저 좋아하는 감정에 불과했구나 라고 생각이 드는 것 같아요...
-
방금 거의 심장 멈출뻔함
-
수.패 좆됐다 1
1교시 잘가
-
얼굴을 타고나지 못했으면 운동을 해서 몸이라도 만들어야겠구나..ㅠㅠ
-
오야스미 1
네루!
-
인싸놈들 죽어 4
두 번 죽어
-
내 그릇은 너무 작은데
-
근데 벽느낄것 같음
-
ㅈㄱㄴ
-
말끔하게생겻으면대학이라도잘가지말던가 아
-
귀여운 연하녀나 돈 많은 누나한테 입양당하고싶다..
-
히히 일어나사 가야지
-
우나나 어ㅏ쿠와쿠~~~~
-
진짜 개놀랐잖아 시발
-
불안하다.. 고대식 681/679/676인데 스모빌 될까요 ㅎ.. 연대도 그렇고...
-
이게 무슨 말이지 하고 들어오신 분들 많으시죠? 물리학은 제가 생각하기에 가장 적은...
-
제발ㅜㅜ 안되는대
-
삼수 성공할 때 6
그 때 인증하고 탈오르비 해야징
-
프본인데 어떰뇨 10
젤 잘나온 사진임
-
요즘 2
넷플 재밌는 거 없나 추천좀
-
ㅇㅈ메타인가 6
오르비나가잇어야지
-
자니? 7
자는구나..
-
왜냐면 자꾸 주변에서 훔쳐가서 장난침
-
현실 후회 집착물 가능성 높아짐ㄹㅇ
-
이번에 만점자 많다던데…하찮은 점수지만 그래도 올려봅니다
-
방금까지도 아버지와 기나긴 이야기를 하고 여기서 남은 고민을 이야기해봅니다.이...
-
ㅇㅈ 9
ㅁㅌㅊ
-
자러갈게요 6
오릅ㄱ언들 잘장
-
분위기 ㄱㅊ은 곳으로
-
여기랑 이미지가 너무 달라서 포기함뇨
-
42344로 갈만한 학교 있음? 언매 미적 세지 지1
-
*지 *내드렸습니다
-
유치원때부터 4
12시반에.자고 7시에.일어나서 다크서클이 ㅈㄴ 진함 ㅠㅡㅠ
-
거기다가 꿀잼까지 보장함 도파민이 봇물 터지듯이 나오는 중 ㅋㅋㅋㅋㅋ
-
어디가 더 낫다고 보시나요??
-
추천좀
-
후..
안내려도 풀려서
근데 발상은 아닌듯
근데 저 수선의 발을 마땅히 내려야 한다! 까지의 당위성은 솔직히 60도 특수각 아니면 잘 못느끼겠었어요
혹시 님은 수선의 발 안내리고 푸셨나요??
처음 봤을때 너무나도
당연히 수선으로 풀었고
두번째는 ac pc구해서 풀었어요
아하 감사합니당
60도라는 특수각을 사용할 수 있는 직각삼각형을 만들어야겠다고 생각하는건 크게 무리는 아니기 때문에 발상적이진 않은듯
감사합니다
다들 그렇게 생각하시네요
걍 적당하게 풀었나보네요
전안내리긴했는데너무노골적이어서발상까진아닌듯
혹시 어떻게 푸셨나요..?
선생님 풀이 보고 처음에는 발상적이라 느꼈는데 결국 AC의 길이가 sqrt2+sqrt6으로 주어지기에 수선의 발을 H이라 할 때 삼각형 ABH에서 AH의 길이가 sqrt2임을 활용해 CH의 길이가 sqrt6임을 결정할 수 있으니 필연적이라 볼 수 있지 않나 생각합니다.
저는 필연이라는 것도 결국 '내 입장에서 자연스러운' 풀이를 볼 때 쓰는 표현이기에 선생님이 '60도랑 더하기 꼴로 주어진 건 굉장히 저 수선의 발을 어필하고 있'다고 느끼셨다면 필연으로 보는 것이 맞지 않나 생각합니다.
자세한 코멘트 감사합니다
아무래도 딱 한풀이에만 적용되는 풀이는 제 스스로가 지양해서 그런지 조금 의구심이 들었는데 덕분에 해소가 되었습니다
참고로 저는 이렇게 풀었습니다.
1. 삼각형 ABC에서 각 A를 중심으로 cos법칙 돌리면 AC의 길이 알 수 있음
2. 삼각형 PBC에서 sin법칙 돌리면 CP의 길이를 알 수 있음
3. 삼각형 ABC에서 각 C를 중심으로 cos법칙 돌리면 각 C의 크기가 45도임을 알 수 있고 그에 따라 각 ACP의 크기가 30도임을 알 수 있음
4. 삼각형 ACP에서 sin(각 ACP) 값 활용해 넓이 구할 수 있음
아 저랑 3번만 달랐네요
자세한 설명 감사합니다!
전 길이 구한다음 넓이니까 각이필여한데?
그리고 15도 있길래 혹시?하면서 전체삼각형 사인법칙 쓰니까 45도 나와서 그렇게 바로 계산했어요
15도로 힌트를 눈치챈 당신은 센스쟁이
AB 길이 알고 BC 길이 아는데 각 ABC가 75도길래 그냥 cos75 이용해서 했어용
코사인75도를 외우세요..?
이거 중학도형 모르면 절대 못품? ㅠㅠ
전 그냥 바로 사인법칙씀 바로 45도 나오길래 1분컷 냈음
저는 덧셈정리..