[박수칠] 2016학년도 포카칩 모의평가 예비시행 해설
2016학년도 포카칩 모의평가 예비시행(B형) 해설-박수칠.pdf
2016학년도 포카칩 모의평가 예비시행(A형) 해설-박수칠.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제가 진학사를 아직 써본적이없는데요 1. a대학 b학과를 쓸 성적이 안되는...
-
프사바꿀까 0
얘가 제 최애캐이긴 한데 뭔가 프사 바꾸고싶다는 욕망이 들 때가 있음
-
나 ㅈ되는건가
-
지금이랑 똑같으면 기하해야겠다..
-
난 물1꿀과목 바이럴당해서 진짜 물1이 꿀인줄 알았음 5
이런미친새끼들아!!!!
-
일찍 자야지 2
미인은 잠꾸러기 는 농담이고 그냥 몸에 힘이 없음
-
기하할까 4
이건기하가맞다
-
어떻게 했어도 씹 goat학교인데
-
일단 제목 어그로 죄송하구요. 근데 순수 어그로까진 아니니 화내진 마시구요. 원래는...
-
기하가 체질이면 3
미적하는것보단 나을수도
-
[LoL] 2025 T1 Uniform Jersey 품절 3
- 도란 전사이즈 품절 - 오너 S, M 품절 - 페이커 S, M 품절 - 구마유시...
-
그래야 합법 재르비하는 걸 볼테니까
-
확통 3
고1 경우의수 완벽하게 할줄알면 그냥 다 끝인가요? 고1꺼하는데 ㄹㅇ 돌겠음......
-
국어는 재수때 6 9 수능에서나 그나마 인간구실 했고 수학은 3수 수능 가서야...
-
화1 바이럴 보다보면 13
화1 마려워짐 진짜 이만한 꿀과목 없는거 같은데 ㅜㅜ 당장 해야겠다
-
이 좋은걸 왜 모르지
-
심찬우T 생글 업로드 일정 어떻게 되는지 아시는분 댓글 부탁드립니다
-
전제1) 3등과 4등 사이 저 간격에 사람이 있더라도 전부 설대로 빠진다고 가정함...
-
[시작하기 전에 원문 주소 첨부 먼저 하겠습니다.]...
-
성대 인과계 0
645.3 추합 ㄱㄴ?
-
어떤 걸 받아가라 한다 내가 해봤는데 안됐다고 사기라고 한다 옆에 있는 직원한테...
-
돌고도는 3
물레방아
-
하…
-
제발 ㅠㅠ
-
지랭이
-
레전드 인생
-
감귤맛 요플레+블루베리. 감귤향이 은은하게 나면서 블루베리의 톡톡 터지는 식감 +...
-
앙망
-
이거 어떻게 쌓고 어디다 써먹을 수 있나용
-
이번에 더 좋은 대학에 가기 위한 도약일뿐 한양대 논술 기억하고 있겠다
-
붙여주세요 ㅜㅜ
-
-1등급, 받아들일 수 없는 2등급은 풀 필요 없음.—>바로 4규 시즌1으로…....
-
수학만잘봤으면 0
에휴 작년보다 훨씬 잘볼줄 알았지만 작년보다 훨씬 쳐망했네 수학만 잘봤으면 성대는 됐을텐데
-
국어를 잘하기 위해선 '뇌'를 키워야 합니다. 국어 실력과 독해 실력을 향상시키기...
-
앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙...
-
난 과탐을 해봤어요!!
-
2점인가 3점인가 몰?루
-
메가 환급 조건 0
모의,수능 다 입력했었고 모의지원도 다 했는데요 합격한 학교의 합격증만 가지고...
-
실권이있는건아니라도 옯당도 만들고 걍 지역구 옯회의원하나씩 뽑고 지역별로 당협위원장도 있고
-
시대컨 플로우 숏컷 전 숏컷 난도가 개애애애높아서 플로우를 더 좋아하긴함 둘 다...
-
나같은사람있음? 11
+1결과 국어수학 다 떨어짐 ㅁㅌㅊ?
-
점공 6명 남았는데 4등이 508이네요 추합 생각하면 504로 써볼만도 했나 싶어서 아쉽..
-
에휴다노...
-
??
-
메가 숭배하라 5
ㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅ진짜 찬양함 대 메 가 아니...
-
이런거 풀려면 입체도형 특징 다 외우고 있어야해요? 수능특강엔 입체도형 종류도 안알려주던데 ㅜ
-
22도 멸종위기종인데 19는 없어야만함...
-
내일들어오겠지만 ㅈㄴ빡치네..ㅠㅠ
안녕하세요 선생님 해설 감사합니다!
29번과 관련해서 저번에 쪽지받고 처음엔 이상하게 생각했는데 그날부터 천천히 고민해보니 선생님의 말씀이 타당한것 같습니다.
만약 선생님 말씀대로 해석하여 문제를 풀경우 최댓값이 아마 더 커질것같은데 이부분에 대해서 계속 고민하고 있으며 더 엄밀하게 논증해서 답안을 내어 오르비에 올려보도록 하겠습니다.
댓글 감사합니다~ ^^
저도 고민을 많이 했는데요, 일단 해설지에는
1. 원과 정육각형의 접점이 변의 중점인 경우
2. 원과 정육각형이 접점이 변의 중점이 아닌 경우 (단, 원과 정육각형이 접하는 것을
원과 정육각형의 변이 접하는 경우로 봄)
로 나눠서 풀었습니다. 말씀하신 대로 2에서는 답이 조금 커지구요.
원과 정육각형이 꼭짓점에서 만나지만 변과 접하지는 않는 경우
(설명이 조금 어려운데 29번 해설 맨끝에 그림이 있습니다)도 생각할 수 있는데
복잡해서 안실었습니다. (사실은 포기ㅎㅎ)
해설지 만들면서 문제 만드는데 공을 많이 들였다는 느낌이 확 들었습니다.
좋은 모의고사 만들어주셔서 감사하단 얘기 드리고 싶어요!
해설지 너무 감사드립니다.
해설지 보고 몇가지 궁금한 것좀 물어볼게요.
19번에서 D와 C의 y좌표를 잡으실때 +- 3/2 (플러스마이너스 3/2) 로 하지 않아도 되는 이유가 궁금합니다.
20번 ㄷ 에서 f(x)의 변곡점을 f ` (x) 의 그래프 개형을 그려봤을 때 f ` (x)가 극댓값 혹은 극솟값을 가질 수 없으므로 변곡점이 존재하지 않는다라고 하면 논리상 문제가 되는 부분이 있을까요??
29번에서 원과 정육각형의 교점이 정육각형의 한변의 중점인 경우 에서 정육각형의 중심을 H라 하고
O1P 벡터를 O1H 벡터 + HP 벡터로 하고 O2Q 벡터를 O2H 벡터 + HQ 벡터로 하면 최댓값을 구하는과정이 많이 간단해지지 않을까요??
[19번] 결론부터 말하면 두 평면이 직교하고, 각각의 평면이 x축에 대해 대칭이기 때문에
점 C의 y좌표가 3/2일 때나 -3/2일 때, 점 D의 y좌표가 3/2일 때나 -3/2일 때 모두
선분 CD의 길이가 같습니다.
이해를 위해 그림으로 따져 봅시다.
아래 링크의 첫 번째 그림에서는 두 점 C, D의 y좌표가 모두 3/2입니다.
http://image.fileslink.com/245c2e99852ba68/Microsoft_PowerPointScreenSnapz017.jpg
첫 번째 그림에서 두 점 C, D의 xy평면으로의 정사영을 각각 C ’, D ’이라 하면
이 점들과 두 점 C, D에서 x축에 내린 수선의 발 두 개로
두 개의 회색 직각삼각형을 만들 수 있습니다.
이 삼각형들을 평면 √3y-z=0에 대해 대칭이동시키면 두 번째 그림이 나타납니다.
이때 선분 CD의 길이가 변하지 않고, 평면 √3y-z=0에 x축이 포함되어 있기 때문에
선분 CD와 x축이 이루는 각도 그대롭니다.
두 점 C, D의 y좌표가 모두 -3/2일 때도 마찬가지겠죠.
그리고 해설지에서 경우들을 고려하지 않은 것은
문제에서 cos² (theta)의 값들의 합이 아니라 cos² (theta)의 값 하나만 구하라고 했기 때문입니다.
이런 경우에는 가능한 모든 조건을 다 따질 필요 없이, 조건을 만족하는 경우 하나만으로
답을 내면 문제 푸는 시간을 줄일 수 있죠.
[20번] 문제에 주어진 함수가 아니라 일반적인 함수에 대한 질문 맞죠?
f ‘(x)의 도함수가 f ‘’(x)이므로
f ‘(x)의 극점에서는 f ‘’(x)의 부호 변화가 생기기 때문에 f(x)의 볼록한 방향이 변합니다.
즉, f ‘(x)의 극점에서 f(x)의 볼록한 방향이 변하고,
같은 맥락에서 f ‘(x)가 극점을 갖지 않으면 f(x)의 볼록한 방향이 변하지 않는다고 할 수 있겠네요.
그런데 두 명제는 ‘이’의 관계다 보니 반례가 있습니다.
아래 링크의 함수 f(x)는 점 ( a , f(a) )를 경계로 볼록한 방향이 변하는데
이 점에서 미분불가능하기 때문에 도함수 f ‘(x)가 극점을 갖지 못합니다.
http://image.fileslink.com/245c2e99dab6b9d/Microsoft_PowerPointScreenSnapz018.jpg
하지만 20번 문제처럼 두 번 미분가능한 함수로 한정하면 반례가 나타날 일이 없겠네요.
[29번] 해설지의 첫 번째 풀이는 접점이 변의 중점일 때 ’두 점 P, Q가 여기에 있으면
내적이 최대겠구나’를 예상하고 푼 것입니다. 그리고 그것을 확인하기 위해 풀이와 같은
과정을 거쳤구요. 그림 하나에 겹쳐 그리면서 생각하면 간단한데 글로 표현하다 보니
많이 길어졌네요 ^^;
그리고 처음 문제 풀 때 벡터 분해하고, 성분으로 나타내서 접근할까 싶었는데
변수가 2개 생겨서 골치 아플 것 같아 그냥 넘어갔습니다.
그런데 지금 풀어보니 이 방법도 간단하네요...ㅎㄱ
이 방법도 정리해서 추가하도록 하겠습니다 ^^
해설 감사해요 ㅠㅠ
네 학습에 도움 되길 바랍니다.
열공하세요~ ^^
28번 해설 사인셉타값 r+1분의 r인거같은대 수정부탁드립니다
헉 이런 실수를...
수정했구요 피드백 감사합니다 ^^