[박수칠] 수학 B형 변별력 문제 풀려면 기본 개념/유형부터 다지세요~
수학이 A형, B형으로 바뀐 2014학년도 수능부터
30번의 지수함수, 로그함수 그래프 문제가 미분법 문제로 대체되었습니다.
동시에 여러 개념이 복합적으로 적용되고, 계산 분량도 늘어났죠.
(계산 분량 측면에선 2014학년도 수능 30번이 압권 ㅡㅡd)
지수함수, 로그함수 그래프 문제는 대개
주어진 조건을 만족하는 몇 가지 그래프를 그리면서 규칙을 찾는 방식으로 접근합니다.
그래서 기본 개념/유형을 아는 것만으로는 부족하고, 비슷한 유형에 대한 연습이 필요합니다.
반면 미분법 문제는 복잡한 식이나 조건을 제시해서 수험생을 쫄게 만드는 면이 있지만,
천천히 뜯어보면 기본 개념/유형의 조합이라는 것을 알 수 있습니다.
때문에 주어진 조건과 자신이 공부했던 유형의 연관성을 떠올린다면
상대적으로 쉽게 접근할 수 있는 면이 있습니다.
그럼 2015학년도 수능 B형 30번 문제를 살펴봅시다.
함수 f(x)는 비교적 간단한 반면, 함수 g(x)는 절댓값 기호와 시그마를 섞어서 복잡하게 정의되어 있습니다.
함수 g(x)를 자세히 살펴보기 위해 시그마를 풀어쓰고, f(x)를 대입해보도록 합시다.
이제 함수 g(x)는 n개의 절댓값의 합, 차로 표현되었습니다. 그럼 절댓값 기호를 없애야죠?
많은 문제에서 연습했듯이 절댓값 기호 안의 식이 0일 때의 x값을 경계로 구간을 나눠봅시다.
그러려면 다음 방정식을 풀어야죠.
여기서 한 가지 눈에 띄는 것이 있는데 이 방정식은 k가 짝수일 때 실근이 없습니다.
그리고 k가 짝수면
이 성립하기 때문에 k가 짝수인 절댓값은
다음과 같이 절댓값 기호가 저절로 없어지면서 실수 전체의 집합에 대해 미분가능한 꼴이 됩니다.
따라서 함수 g(x)가 실수 전체의 집합에서 미분가능하려면
k가 홀수인 절댓값만 남겨서 만든 새로운 함수
가 실수 전체의 집합에서 미분가능한 함수면 되겠네요.
(여기서 2m-1은 n보다 같거나 작은 최대의 홀수라는 점도 챙겨둬야죠.)
그리고 k가 홀수일 때는
이기 때문에 x=-1일 때를 경계로 구간을 나눠서 함수 h(x)의 함수식을 정리하고, 도함수 h’(x)를 구하면 다음과 같습니다.
x < -1일 때
x > -1일 때
따라서 함수 h(x)는 x < -1일 때와 x > -1일 때 미분가능하고,
실수 전체의 집합에 대해 미분가능하려면 x=-1일 때도 미분가능해야 합니다.
그러려면 먼저 함수 h(x)가 x=-1에서 연속이어야 하죠.
함수 f(x)가 연속함수라면 함수 | f(x) |도 연속함수이듯이
연속함수들의 절댓값의 합, 차로 이루어진 함수 h(x)도 연속함수가 됩니다.
그래서 함수 h(x)는 x=-1에서 당연히 연속이 되고, x=-1에서 미분가능하게 하려면
①, ②에 x=-1을 대입한 결과가 일치하기만 하면 됩니다.
여기서 2m-1=19는 n보다 같거나 작은 최대의 홀수이므로 n의 값이 될 수 있는 것은 19와 20입니다.
따라서 답은 19+20=39가 되구요.
위 풀이 과정에 쓰인 기본 개념 및 기본 유형 풀이법 가운데 주요한 것을 나열하면 다음과 같습니다.
⑴ 절댓값 기호를 포함한 함수식의 계산
⑵ 절댓값 기호를 포함한 함수의 연속성
⑶ 합성함수의 미분법
⑷ 구간별로 정의된 함수의 도함수
함수의 연속성과 미분법을 배우면서 꼭 다루게 되는 개념/유형들입니다.
따라서 위 문제를 풀려면 주어진 조건을 이 개념/유형과 연결시켜 차근차근 풀어나가면 되는 겁니다.
하나만 풀면 섭섭하니 하나 더 봅시다.
아래는 2014학년도 수능 B형 30번 문제입니다.
조건 (나)를 바로 활용하는 것은 어렵기 때문에 조건 (가)부터 살펴봅시다.
함수 g(x)가 (이차함수)x(지수함수)의 꼴이어서 몇 번이고 미분가능하기 때문에
조건 (가)로부터 g”(1)=0, g”(4)=0임을 알 수 있습니다.
따라서 함수 f(x)를 일반적인 이차함수
로 두면 함수 g(x)와 도함수 g’(x), 이계도함수 g”(x)는 다음과 같습니다.
조건 (나)에서 얻은 방정식 g”(x)=0의 근 1, 4는 이차방정식
의 근이며 근과 계수의 관계에 따라 다음이 성립합니다.
이제 조건 (나)를 이용할 방법을 궁리해봅시다.
점 (0, k)에서 곡선 y=g(x)에 접선을 긋는 것은 미분법을 이용한 접선 방정식 유형 가운데
곡선 밖의 점에서 곡선에 접선을 긋는 경우에 해당됩니다.
따라서 접점의 좌표를 ( t, g(t) )로 가정하고, 접선의 방정식을 만든 다음 (0, k)를 대입합니다.
점 (0, k)에서 곡선 y=g(x)에 세 개의 접선을 그을 수 있으므로 곡선과 접선의 접점 또한 세 개가 나타납니다.
그렇다면 t에 대한 방정식 ①은 서로 다른 세 개의 실근을 가져야 하구요.
따라서 ①의 양변을 y로 둬서 얻은 두 함수 ②, ③의 그래프는
서로 다른 세 점에서 만나야 합니다.
이때의 k값 범위를 따지려면 함수 ③의 그래프가 필요하겠죠?
a>0라고 가정한 다음, 도함수를 구하고 그래프 개형을 그려봅시다.
따라서 두 함수 ②, ③의 그래프가 서로 다른 세 점에서 만나려면 다음 부등식이 성립해야 합니다.
이것을 (나)에 주어진 k의 범위와 비교하면 다음과 같이 a의 값과 g(x)를 구할 수 있습니다.
따라서 답은
여기서도 풀이 과정이 복잡하긴 하지만, 주어진 조건을 다음과 같은 기본 개념/유형과 연결시켜서
차근차근 계산하면 정답에 이를 수 있습니다.
(1) 이계도함수를 이용한 변곡점 찾기
(2) 곡선 밖의 점에서 곡선에 그은 접선의 방정식
(3) 미분법의 활용-방정식의 실근 개수와 함수 그래프의 교점 개수
또한 이 문제는 다음과 같은 교과서 밖의 개념을 알면 후반부의 계산이 조금 쉬워집니다.
(4) f(x)g(x) 또는 f(x) / g(x) 꼴의 함수 그래프 개형을 x절편, y부호, 점근선만으로 그리기
(5) 곡선 밖의 점에서 곡선에 그을 수 있는 접선 개수가 변곡점에서의 접선을 경계로 변함
(4), (5)와 같이 특정 유형에만 적용되는 교과서 밖 개념을 공부해두는 것도 좋지만,
어떤 문제가 나오더라도 대처할 수 있으려면 기본 개념/유형을 이용하는 방법을 터득해두는 것이 훨씬 더 좋습니다.
물론 계산 과정이 길고, 문제 푸는 시간이 오래 걸리는 단점이 있지만요...
작년 수능 난이도와 올해 보도된 평가원, 교육부의 출제 방향을 볼 때,
21번, 29번, 30번 같은 변별력 문제는 작년과 비슷하거나 조금 어렵게, 나머지 문제들은 비슷한 난이도를 가질거라 생각합니다.
그렇다면 30번 문제를 풀 시간을 충분히 확보할 수 있으니 계산 과정이 복잡할 것으로 예상되더라도
기본 개념/유형에 충실한, 일반적인 방법을 찾기만 하면, 문제 푸는 시간은 충분할거라 생각됩니다.
수능 준비를 위해 기본 개념/유형에 대한 정리를 끝내고 수능/모평 기출, 실전 모의고사 등을 풀다 보면
유형 하나하나에 집착하게 되고, 기본 개념/유형을 복습하는데 소홀해지기 쉽습니다.
그러다 보면 9월 모평쯤에 점수가 떨어질 수도 있구요.
문제 풀다가 기본 개념/유형이 부족하다 싶은 단원이 생기면 복습하고,
정리하는데 아낌없이 노력하시기 바랍니다.
수능 보는 전날까지 말이죠...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일단 제목 어그로 죄송하구요. 근데 순수 어그로까진 아니니 화내진 마시구요. 원래는...
-
기하가 체질이면 2
미적하는것보단 나을수도
-
[LoL] 2025 T1 Uniform Jersey 품절 0
- 도란 전사이즈 품절 - 오너 S, M 품절 - 페이커 S, M 품절 - 구마유시...
-
그래야 합법 재르비하는 걸 볼테니까
-
확통 2
고1 경우의수 완벽하게 할줄알면 그냥 다 끝인가요? 고1꺼하는데 ㄹㅇ 돌겠음......
-
국어는 재수때 6 9 수능에서나 그나마 인간구실 했고 수학은 3수 수능 가서야...
-
화1 바이럴 보다보면 10
화1 마려워짐 진짜 이만한 꿀과목 없는거 같은데 ㅜㅜ 당장 해야겠다
-
다음닉네임 0
모의수능으로대학가기
-
이 좋은걸 왜 모르지
-
심찬우T 생글 업로드 일정 어떻게 되는지 아시는분 댓글 부탁드립니다
-
전제1) 3등과 4등 사이 저 간격에 사람이 있더라도 전부 설대로 빠진다고 가정함...
-
[시작하기 전에 원문 주소 첨부 먼저 하겠습니다.]...
-
성대 인과계 0
645.3 추합 ㄱㄴ?
-
어떤 걸 받아가라 한다 내가 해봤는데 안됐다고 사기라고 한다 옆에 있는 직원한테...
-
돌고도는 3
물레방아
-
하…
-
제발 ㅠㅠ
-
지랭이
-
레전드 인생
-
감귤맛 요플레+블루베리. 감귤향이 은은하게 나면서 블루베리의 톡톡 터지는 식감 +...
-
앙망
-
이거 어떻게 쌓고 어디다 써먹을 수 있나용
-
이번에 더 좋은 대학에 가기 위한 도약일뿐 한양대 논술 기억하고 있겠다
-
붙여주세요 ㅜㅜ
-
-1등급, 받아들일 수 없는 2등급은 풀 필요 없음.—>바로 4규 시즌1으로…....
-
수학만잘봤으면 0
에휴 작년보다 훨씬 잘볼줄 알았지만 작년보다 훨씬 쳐망했네 수학만 잘봤으면 성대는 됐을텐데
-
국어를 잘하기 위해선 '뇌'를 키워야 합니다. 국어 실력과 독해 실력을 향상시키기...
-
앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙 기모찌ㅋㅋ앙...
-
난 과탐을 해봤어요!!
-
2점인가 3점인가 몰?루
-
메가 환급 조건 0
모의,수능 다 입력했었고 모의지원도 다 했는데요 합격한 학교의 합격증만 가지고...
-
실권이있는건아니라도 옯당도 만들고 걍 지역구 옯회의원하나씩 뽑고 지역별로 당협위원장도 있고
-
시대컨 플로우 숏컷 전 숏컷 난도가 개애애애높아서 플로우를 더 좋아하긴함 둘 다...
-
나같은사람있음? 11
+1결과 국어수학 다 떨어짐 ㅁㅌㅊ?
-
점공 6명 남았는데 4등이 508이네요 추합 생각하면 504로 써볼만도 했나 싶어서 아쉽..
-
에휴다노...
-
??
-
메가 숭배하라 5
ㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅㅅ진짜 찬양함 대 메 가 아니...
-
이런거 풀려면 입체도형 특징 다 외우고 있어야해요? 수능특강엔 입체도형 종류도 안알려주던데 ㅜ
-
22도 멸종위기종인데 19는 없어야만함...
-
내일들어오겠지만 ㅈㄴ빡치네..ㅠㅠ
-
샴푸와 바디워시로 인한 환경오염이 줄어듦
-
덕코좀주세요 0
저 닉변하고싶음..
-
ㅇㅇ
-
올해느꼈다
-
화학을 해본적이 없어서.. 화1 화2에서 원자구조, 금속의 반응성, 전기과학 이...
-
전 -20°C (강원도에서 스키 탈 때) 43°C (미국 데스밸리)
-
몇점이 나오든 3년 내내 고려대 갈거라고 떠들고 다녔었는데 쩝
좋은글 감사합니다
읽어주셔서 감사합니다.
수능 준비에 제 글이 도움되었으면 좋겠습니다~ ^^
하 진심 공감 진짜....
당연한 얘기지만 공부하면서 잊지 마시라고 글 올려봤어요~ ^^