이해원의 경우의 수 무료 논리특강 [교재포함]
1. 경우의 수를 논리적으로 제대로 공부할 수 있도록 강의한 50분짜리 강의입니다.
2. 교재파일도 첨부되어 있으니 다운받아서 공부하세요.
(강의와 교재 전부 무료공개입니다.)
3. 처음에 강의 화면 초점이 살짝 안맞는데 이해해주세요 촬영환경이 별로라서 ㅜ.ㅜ
설정에서 720p로 설정하면 화질 더 좋아져요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
옮밍아웃하고 싶다
-
Team 생2 홧팅!
-
본인이 찐 I 내향형이고 사회성 부족해서 회사생활 힘들거나 하는 경우 제외하고...
-
저랑 만나싷분 5
지금만나면 오마카세
-
2026 모집정지 << 이거 현실화되면 team07은 어케되는거지 설인문 라인이었던...
-
고대분들 0
학교 복전 쉬운편인가요??
-
다군도 불안하긴 한데 가군 안정지원이 나으려나요 가군에 연고계약 지금 텔그는...
-
정시를 처음 넣어봐서 그러는데 광명상사 한서삼 라인 봐주는 컨설팅 하시는분...
-
풀이에서 틀린부분 있나요? 확률 문제 N을 B라고 잘못쓴거 말고용
-
국어과외하고싶다 0
내 사고방식을 이식시켜줄텐데
-
어덕해
-
음 옯비 4년째 보고있는데 매년 울분에 찬 저격과 글삭당하는걸 봐온지라 컨설팅...
-
중대 마피아가 누구죠?
-
수학 모르겠어요 15
루트 알파n - 루트 베타n 어떻게 구하죠… 흑흑
-
작년 기출은 분명히 다 쉬웠는데 왤케 빡빡하게 낸 거지…저만 그랬나요.. 계산도...
-
허수긴 하지만 2
내년에 사탐으로 한 번만 더 해보구 싶다
-
내년에 연세대 수리논술을 볼건데 1월부터 준비하려고 하거든요.. 누구 들을지...
-
레전드고민
-
아 기분좋다 1
푹신하고 따뜻한침대에서 뒹굴면서 오후에 오르비하기
-
지고쿠 지고쿠
-
허거걱
-
아 나도 옷 사야되는데 17
삼수하면서 옷 사는 거 걍 유기해버림
-
원피스입고 신검받고 계셨음
-
같은과 거리 비슷 어디감?
-
목소리부터 생긴거까지 다 여자였는데 심지어 엄청 고우셨단말임… 근데 의사랑 말하는데...
-
올해컷 2
언매1컷91 수학1컷86(확통 93) 영어1컷88 한지 1컷 45 사문1컷 45 이게맞음뇨
-
https://m.dcinside.com/board/sdijn/1500322 올해...
-
무신사에서 3
세일하는데 25마넌 씀 히히
-
ㅈㄱㄴ
-
어디가 더 아웃풋이 좋나요?
-
1) 풀이.f(x)는 삼차함수이므로 중간값정리에 의해 실근을 하나 이상 가진다.f가...
-
생2하는게 맞나싶다 10
진짜 주변에서 다말리네..
-
수능성적표 조기발표는 없나요?
-
나 고대좀 가자 제발 ㅜㅜ
-
그러면 1학기 다니고 휴학해서 삼반수후에 바로 1월입대하면 시간손해 없는건가
-
ㄱㄱ
-
문과 정시파이터고 모고 2~3뜨는 수준이면 닥 확통인가요? 정시로 돌린지 얼마...
-
학부대학은 무전공인거 같은데 자유전공은 과 선택 제한 있나요? 고자전 드가서 공대...
-
올해 성불하는 03이든 1년 더하게 된 03이든 모두 행복하자
-
등급컷 희망회로 5
국어 언매 89 화작 93 수학 확통96 미적84 기하88 경제42 (가채점 입력한...
-
도형문제 코사인값 무슨 -71/98 나오고 지랄났던데 나만 그럼?
-
군필2+현역3 4
1박?2일
-
반갑다 4
-
ㅇㅇ?
-
테슬라 숏아님뇨 1
이거 숏인데 하..
-
학부 선호도 우위 연대 vs 고법의 막강한 전통 고대
-
진지하게 간절하게 매일매일 공부할 수 있게 사회적으로 용납된 시기가 지남...
-
화작 95 언매 92 미적 88 전원생존, 85-87 희비교차, 85 언더 2 확정...
꺄 잘들을게요
네 열공하세요~!
항상 감사하지말입니다.
ㅋㅋㅋㅋ 군인인가요 ㅋㅋ
한완수 증명공부 하고 공대가면 수학할때 도움 많이 되나요???
계산력 자체로는 크게 도움이 되는데 공대공부를 위해 한완수를 효율이 떨어지죠..
1학년때는 다 같이 미적분학 듣지않나요??
미적분학들으면 미적분학책을 공부하면되지 그거때문에 한완수를 공부할 필요는 없는거죠
아물론 수험생때 한완수를 공부하면 나중에 도움이 된다는건 맞고요
네 수험생이라서 물은거에요 대학생이면 대학공부해야죠 ^^
아 ㅋㅋ 네 제가 잘못알아들었군요! 열공하세요 ㅎㅎ
아 한완수 수특 풀다가 생각했는데 모르면 답지볼까요??? 너무 많이 보는듯해서요
이제 인강으로 뛰어드시는건가요?? 멋지시네요
감사합니다ㅠㅠ 딱!!저한테필요한강의네요ㅜㅜ집가서들을게요!
사랑합니다
대박이다..!통계 어떻게 해야 할지 많이 고민했었눈데 정말 사랑합니다...!
잘 들을게 ㅋㅋㅋ
ㅋㅋㅋㅋ
해원님 매번 좋은 자료감사합니다.
저 뭐 하나 질문드릴게있는데.... 전 수리 논술준비해본적없고 심층면접준비만 해본적있는 의대목표하는 삼수생입니다.
논술아무것도모르는데 한완수에 제시하는대로 심특과정 충실히하면 되나요?
말투 개커엽 ^-^
쑤용도 ㅋㅋ
우와. 이런 좋은 강의 감사요.
감사합니다
롤선생이랑 똑같이생겼다.
벨트 루이비똥 인가요?
경우의 수 단원은 왜 그게 오답인가 알아내는게 더 중요한데... 그런 사고력 부분에 대한 언급이 좋군요...
마지막문제 보면서 그림을 중복해서 세는 실수를 피하는 다른 방법이 없을까 가만히 생각해보니 가로가 세줄 세로가 네줄 이므로 숫자 1,2,3 으로 네자리수를 만들되 저 세개의 숫자중 하나만 중복해서 두번 쓸수있게 만드는 가지수로 풀면 중복 시킬 숫자로 어떤수를 고르나 똑같으므로 3×4!/2!
잘듣겠습니다!
잘생겼네요 안경 벗은거 보니 라식하셨나여?
손가락 엄청 기네여....잘듣고 갑니당 비록 대학생이긴 하지만 이렇게 듣는 것도 재밌네요
겁나잘생기셨다..
내일 봐야지.. 알림용!
보물이다 ! 강의를 많이 안들어봐서그런가 이렇게 배우는건 처음이네요 !!
조합강의도....ㅎㅎ
음 태클은 아닌데요 ㅋㅋ 곱의 법칙이랑 수형도를 연결 지어서 설명하실 때 말씀하시는 "수형도의 뒤가 같을 때 곱의 법칙을 쓸 수 있다"라는 말은 엄밀하게 말하자면 틀린 말이에요. 수형도의 뒤가 항상 똑같을 수가 없죠. 첫번째 문제에서는 같은 길을 지나가기 때문에 우연히 수형도의 뒤가 같을 뿐이지, 두번째 문제에서부터는 수형도의 뒤는 다르지요. "수형도의 가짓수가 같을 것이라고 예측되기 때문에 곱의 법칙을 쓸 수 있다"라고 말해야 정확한 거 같아요.
저두 이렇게 생각해요