[화1] 고난도 문항의 비밀 (1)
안녕하세요 수능 화학 강사 김동준입니다
다음회까지 화학식량과 몰을 마무리(?)하는 의미로
고난도 문항의 비밀 한 가지를 알려드리려고 합니다
사실 제목을 예전에 즐겨보던 웹툰을 패러디해서
역전! 야매화학 이라고 하려다가 너무 따라하는거
아닌가 싶은 생각에 고난도 문항의 비밀 정도로 바꿔봤습니다
(이미 무슨 말 하려는지 감이 오는 분도 좀 계실거같네요)
일단 바로 들어가보겠습니다
2021년 7월 학평 화1 17번입니다
바로 작년 문제라 아마 많은 분들이 기억하고 계실법한
준킬러임에도 불구하고 오답률 1,2위를 다투던 문제였죠
이 문제를 빠르게 해결해보려고 합니다
(가)에서 (나)로 넘어가면서 탄화수소가 17w 첨가됩니다
여기서 (나)에 첨가된 탄화수소를 구성 원소인
탄소(C)와 수소(H) 질량비로 나눠보면 다음과 같습니다
C3H4의 C와 H 질량비 9 : 1
C4H8의 C와 H 질량비 6 : 1
우연히(?)도 모두 더하니 17w가 되네요
→ 9w + w + 6w + w = 17w
여기에 야매를 0.1스푼 정도 추가해서
“탄화수소 종류에 따른 질량비를 대략 알고 있다면”
(가)에서 CxH6 5w이므로 C : H = 4w : w이 아닐까?
C:H=4:1 이면 C2H6?!
정리해보면 (나)에서
C2H6 C : H = 4w : w (5w)
C3H4 C : H = 9w : w (10w)
C4H8 C : H = 6w : w (7w) 이고
따라서 (나)의 C:H 질량비=19:3으로
ㄱ,ㄴ,ㄷ을 처리할 수 있습니다
이 문제를 이론적으로 접근한다고 하면
전체 질량이 17w, 부피는 9V, H 원자 수는 2N 증가이므로
증가한 양을 활용할 수 있습니다
(가)에서 C는 x로 알 수 없지만 H는 분자당 6개이므로
4V를 4몰(상댓값)으로 보아 H 원자를 24몰(=N)로 잡고
첨가한 C3H4와 C4H8의 부피를 각각 aV, bV라 하면
증가한 H 원자 수는 4a + 8b = 48몰(=2N)이 됩니다
부피는 9V 증가이므로 a+b=9이고
둘을 연립하면 a=6, b=3을 얻을 수 있습니다
이를 통해 증가한 질량을 분석해보면
C3H4 (M=40) 6몰, C4H8 (M=56) 3몰의 질량은
40x6 + 56x3 = 408이고 이게 17w 이므로 w=24.
따라서 CxH6 4몰의 질량 5w를 120이라 할 수 있고
CxH6의 분자량은 30이 되어 x=2를 얻을 수 있습니다
다만 여기까지 찾았다고 해도 ㄷ을 해결하기 위해서는
구성 원소의 질량비로 나눠보는게 제일 합리적이겠죠
여기서 복잡하게 각각의 C, H 질량 계산을 하고 있으면
19, 20번을 날리게 되니까요
하나만 더 보면 22학년도 대비 9월 평가원 화1 18번입니다
기체 1g 부피비가 15:22 이면 분자량비는 22:15 이고
여기에 야매를 0.1스푼정도 추가하여
“대표적인 질소 산화물의 분자량을 알고 있다면”
(가)는 N2O (M=44), (나)는 NO (M=30) 입니다
원자량은 Y가 X보다 크다는 조건이 있으므로
Y가 산소, X는 질소이며 따라서 (다)는 N2O3 (M=76).
물론 이 문제도 이론적으로 접근할 수는 있습니다
(가)와 (나)를 비교하면 분자량이 감소하는데
X와 Y의 질량비가 (가) : (나) = 1 : 2 이므로
Y가 증가할 수는 없고 X가 감소하여야 합니다
구성 원자 수가 5이하이고 원자는 자연수이므로
X, Y가 동시에 변해서 질량비 1:2가 나올 수는 없고
Y가 일정할 때 X가 2:1로 감소하는 상황에서
원자량 X>Y를 만족시키는 경우를 찾으면
처음 풀이와 같은 결론을 얻을 수 있습니다
다만 이 문제도 18번 문제이고
여기에 시간을 너무 많이 소모하면
킬러를 풀 시간이 점점 없어지게 되겠죠
여러분이 대비하고 있는 수능은
‘학문’이 아니라 '시험'입니다
화1을 치는 입장에서는 효율적으로 잘보는게 중요하지
얼마나 학문적으로 아름답게 잘 풀었는지가 중요한게 아니거든요
어쨌든 완벽하게 이론적이지는 못한 것이기에 조심스럽고
개인적으로는 이런식으로 화학을 하는게 좀 슬프기도 합니다만
어쨌든 수능 대비에 도움이 되는 관점이기 때문에
단원을 마무리하는 의미로 쓰게 되었습니다
다음 글에는 이 ‘야매’ 풀이가 나름의 근거를 갖는 이유와
자주 나오는 원자량과 분자량 등을 정리하고
주의할 점 등을 이야기해보려고 합니다
오늘도 긴 글 읽어주셔서 감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
히힛
-
연대 광탈 ㅠㅠ 2
미점공자가 생각보다 훨 많았네요 ㅠ 복학엔딩이군뇨 미점공한 분들이 죄다 서울대...
-
몽글몽글 6
ㅎㅎ
-
연세대미친!!!!!!!! 137
-
ISE나 HASS 같은 국제캠은 조기발표 안되는건가요???ㅠㅠ 친구가 안뜬다고 하네요
-
그냥 어둠의 N수단이 되어버렸어…
-
극한상쇄!!! 5
크아악
-
끄으읕 12
이게 맞는 선택이겠지?.. 골라준 여러분 땡베감
-
출처: 만복피규어 놀랍게도 저 피규어 재질이 바로 PVC다. PVC는 탄화수소...
-
축하한다.
-
연세대 발표 7
연대 합격했따!!
-
서바 강케이에 강사컨 인강컨 몇 개 풀고 싶은 것들 끼니까 수학만 200개 넘어감...
-
쪽지주세요 !!
-
연대 경제 합격!! 12
드디어!!! 내가 현역으로 여길 올 수 있을 줄이야... 정말 꿈만 같네요! 일단...
-
건글의 최초합이 서성한 급이라고 하는데 아무리 증원했어도 의대 입결이 치대급...
-
아 ㅋㅋ 0
자 열심히 사탐 공부 햐보자잇
-
풀 컨텐츠 나열하고 나니까 개설레네 ㅋㅋㅋㅋㅋ 아 너무 맛있을 거 같음 이게...
-
원서를 안넣었으니까
-
우리과는 좀 봐주지 않을래 진짜 에바참치야 내가 머리 꼭대기 매수라뇨..
-
연경제 8
698인데 예비2번임, 핵빵임
-
연대 상경 최초합 12
기쁘다..!
-
너에겐 나보다 더 좋은 사람들이 주변에 많아서 너에겐 좋은 일이지만 왠지 서운했어...
-
대학커뮤니티 노크에서 선발한 숭실대 선배가 오르비에 있는 예비 숭실대생, 숭실대...
-
연대 합격 인증 18
-
평가원 기출 4
혹시 평가원 기출중 발문이나 선지에 a의 n승이라는 수가 나올때 n부분에 루트가...
-
어디가 나을까요?
-
신기하네 ㄷㄷ
-
⭐️ 연세대학교 중앙새내기맞이단에서 25학번 아기독수리들을 환영합니다 ⭐️ 1
⭐️ 연세대학교 25학번 아기독수리들 주목 ⭐️ 안녕하세요! 연세대학교...
-
현역이라 3학년 1학기 내신도 챙겨야 되는데 강의수만 150강이 넘어가서… 부족한...
-
고대찬양하고 고대훌리하고다닌다
-
너무 멀리 잇는거임 하.. 어뜨카지.. 그러면 푸흡 오삼 불고기 크하하하하하하하
-
256살까하는데 부족한가
-
과거의 사례를 미루어봤을떄 무조건임 ㅋㅋㅋ
-
앙 8
조소앙이 어느 시대 사람인지 10초 이내로 대답하시오
-
지나가던 서강대생1이 인정해준다 신촌을 와보면 알게될 것.
-
나는 거기썼다고 거의 광고하고 다닌 느낌인데 지금이라도 노문과 쌍두독수리분들은...
-
탈릅 해야겠다 7
오르비 중독돼서 어제는 잠 한시간 늦게자고 오늘은 단어 외울 때 2분마다 오르비...
-
강민철 이원준 1
06재수생인데 강민철과 이원준 쌤 중에 누구 들을까요? 원점수로 6모 89 9모...
-
잔잔한게 조아 2
-
정시 조기발표 나면 추가합격자 발표도 예정보다 더 빨리 발표하나요?
-
외대 1
외대 언제나와...
-
교정당국 "윤 대통령, 건강 이상 호소" 교정당국 "외부 검사 필요 판단…곧 복귀할...
-
합격했다 휴우우 14
이제 행복한 겨울을 보내용
-
상위 몇퍼정도 될까요?
-
남들 합격할때 난 자퇴 ㅈㄴ특별해보이는데
-
근데 0
언젯적 중경외시냐 이과는 중시경이지 ㅅㅂ
-
밥을 먹어볼까 7
야옹
-
고대고대야... 2
조발 좀 내놔라
-
내껏도아닌데 기분이 좋아서 축하댓 난사중
첫번째 댓글의 주인공이 되세요!
첫번째 댓글의 주인공이 되셨네요 ㅎㅎ
내신 킬러 문제에도 활용할 수 있을까요?
어느정도 선까지는 될텐데 다 적용할 수는 없을거에요 평가원에 적용하는것도 다음 글에 이야기 하겠지만 이걸로 다 풀린다 가 아니라 적절하게 섞어서 쓰는 방식이 될거라서요
넵
잘보고갑니다
맨날 잘 보고있습니다 ㅎㅎ 사소한거라고 생각할수도 있는데 이런 팁들을 생각하다 보면 시험장에서 무기가 될수 있을거라고 생각합니다 !
넵 다양한 도구를 갖춰놓으면 그만큼 더 도움이 될거에요~ 답글 고마워요 ^^
정말 화학1은 아름다운 풀이니 뭐니 수학이랑 비슷하면서도 결국 빨리 확실하게 푸는 것이 최고의 풀이인 것 같습니다
해설에서는 이론적으로 설명해주어야겠지만 잘 풀기 위해서는 요령이 매우 중요한...
그쵸 나름의 엄밀성을 추구하기는 하지만 너무 그쪽으로만 가도 시간이 부족하다보니...ㅠㅠ
혹시 서메기 출강하시는 그분...?
ㅎㅎ 넵 혹시 작년에...?
사실 쌤한테 수업 듣지는 않았는데
올해 윈터스쿨 교재에 쌤 성함이 있어서요
앗 그렇군요 ^^ 기숙사 생활 힘들었을수도 있었을텐데 고생했어요~!