[수학칼럼] 증명을 공부하는게 고난도 문제 풀이에 도움되는 이유
안녕하세요. 상승효과 이승효입니다.
작년에 올렸던 칼럼인데
최근에 증명에 대한 질문을 몇번 받아서
다시 올려드립니다.
Q. (학생의 질문)
"증명하는 과정이 수학에서 고난도문제를 대할 때 어떤 효력을 발휘하나요?"
A. (이승효의 대답)
증명이라는 것은, 교과서에 나와 있는 어떤 정리가 참이 되는 이유입니다. 예를 들어, 피타고라스 정리가 있죠. 그게 참인 이유가 증명이에요. 이걸 배우지 않은 상태에서 혼자서 증명하는 것은 어렵습니다. 증명은 과거에 누군가 엄청나게 똑똑한 사람이 한 것이기 때문에, 그걸 우리가 짧은 시간안에 떠올린다는 것은 어렵겠죠. 그러한 증명이 꼬리에 꼬리를 물고 연결되면서 수학이 발전해 온 것이고, 고등학교 교과서는 그러한 연결에 의해서 만들어진 유기적인 내용입니다. 예를 들어, 수학1, 수학2, 미적분 순서대로 이어지는 것에는 다 이유가 있는 것이죠.
증명하는 과정이 수학에서 고난도 문제를 대할 때 어떤 효력을 발휘하는가. 고난도 문제를 풀어봤다면 알겠지만 여러가지 발상들이 필요합니다. 도형문제라면 어떠한 상황에서 보조선을 어떻게 긋는다, 함수의 식이 주어졌다면 어떻게 한다, 등등. 문제만 풀어온 학생이라면 이러한 발상을 문제를 풀어야 배울 수 있는 거라고 생각하겠지만, 사실 수능에 나오는 모든 발상은 100% 교과서 증명 안에 다 들어있습니다. 그것을 바탕으로 수능 문제를 출제하니까요.
제가 전에 쓴 글에서 미분을 MRI에 비유했는데, 글 중간에 보면 MRI검사를 수백명 해보면서 인체의 신비를 깨달아가는건 어려운 일이라고 했죠? 증명을 배운다는 것은 마치 살아있는 인간을 배우기 전에 해부학을 배운다는 것과 같습니다. 이미 과거에 다른 사람들이 발견한 정보들을 바탕으로 교과서적인 원리들을 먼저 배우는 것이지요. 따라서 교과서 정의, 정리, 증명에서 배운 내용을 바탕으로 기출 문제를 풀게 되면, 문제마다 새로운 것을 배우는 것이 아니라, 문제를 풀면서 교과서 내용을 확인하게 되는 것이지요. 그러한 과정을 기출 분석이라고 합니다. 따라서 기출을 보기 전에 교과서 내용을 정확히 알고 있는건 매우 중요해요.
증명을 해야 하는 두번째 이유. 학생은 미분가능한 함수는 연속함수이다 라는 것을 증명할 수 있나요? 이건 실력지상주의 1주차에서 수업한 내용인데요. 대부분의 학생은 이걸 증명할 수 없습니다. 왜냐하면 미분가능한 함수와 연속함수의 정의를 정확히 모르거든요. 느낌으로만 알고 있고 식으로 정확히 표현할 수 없다면, 매우 쉬운 한줄짜리 증명임에도 불구하고 할 수 없습니다. 그럼 정의를 알고 있는 것이 왜 중요한가, 예를 들어 어떤 함수가 미분가능함을 보여라, 라는 문제가 있을 때 대부분 학생은 1.연속이다. 2.좌미분계수=우미분계수가 같다. 라는 순서대로 문제를 풉니다. 이건 아주 대표적인 잘못된 풀이라고 할 수 있는데, 정의를 잘 모르기 때문이구요, 저렇게 풀리는 3점짜리 문제는 문제가 없는데 4점짜리 문제로 가게 되면 해결이 안되는게 생겨요. 문제풀이의 접근방법은 반드시 정의->정리 순서대로 나아가야 하는데,오개념으로 풀다보면 접근 자체가 안되는 경우가 생깁니다.
증명을 해야 하는 세번째 이유. 직접 증명을 써보면 알겠지만, 아는 내용이라도 논리적으로 설명하는 것이 쉽지가 않습니다. 그건 학생들이 아직 논리적 사고력 또는 표현력이 부족하기 때문이죠. 교과서에 있는 증명들은 매우 간결하면서도 논리적입니다. 복잡한 증명은 고등학교 교과서에 나오지 않기 때문에 누구나 이해할 수 있는데, 그걸 자신이 직접 해보는건 쉽지 않아요. 강사가 설명하는 내용을 들으면 이해는 되지만 똑같이 설명해 보라고 하면 쉽지 않은것과 같은 이유입니다. 즉, 논리적 사고력을 키운다는 것은 다른게 아니고, 연습입니다. 수학은 그것을 연습하는 학문이에요. 고등학교를 졸업하면 미적분이 쓸모가 없을 수도 있고 대부분의 성인은 수학을 잊어버리지만, 중학교까지만 다닌 사람과 고등학교까지 수학을 배운 사람이 논리적 사고력에서 차이가 나는 것은 수학적인 연습을 했기 때문입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 1
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
-
예비 고3인데 이 시점에 수 상하 복습해도 괨찮을까요… 4
초딩 때 수 상하 배우고 성적 개판 치다가 올해 시대 스파르타 다니면서...
-
고2까지 공부 던지고 펑@펑 놀기 고3때 공부 시작해서 재종 들어갈 성적 띄우기...
-
그냥 접겠다..
-
공통수학 (22개정) 공부 통합사회 (22개정) 공부 독서 심슨 정주행
-
자라. 4
3시 전에 자야지
-
이건 팩트인듯요
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 4
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
-
오지훈 개념완성 스텝1까지만 개념기출하고 이신혁쌤 현강 들어가도되나요? 0
스텝2 까지 꼭 수강하고 기출 풀어야 이신혁쌤 따라갈수 있을까요?
-
보고싶다 1
같이 살고 싶어 언젠가는 같이 살겠지
-
군대에서 하려고 하는데 ㄱㅊ음?? 근데 본인 4대역학 개못함 ㅋㅋ 재수강해야 함.....
-
9칸 1
이시점 라인 의미 없다는데 그래도 9칸이면 붙겠죠? 가고 싶어서 모의면접도 가고...
-
일본 애니에는 감동이 있다 가슴이 웅장해진다 진짜
-
10퍼에서 3분만에 2퍼됨
-
ㅂㅂㅇ 4
-
한달만에 완강 ㄱㄴ?
-
아직도 이해가 안된다 20
안읽씹의 심리
-
다들 그럼 뭐하는건지 쓰고나가셈
어떤 교과서로 증명을 연습해야 되나요?
증명은 부차적인 것이 아니라 교육과정에서 반드시 알아야 하는 내용이기 때문에, 중학교부터 고등학교까지 모든 교과서에는 같은 증명이 포함되어 있어요.
감사해요 선생님! 하나만 더 여쭙겠습니다ㅠ
미적분인데 수학,미적분,수학1,수학2 찬찬히 읽고 증명연습할 생각인데 더 해야할 교과서 있을까요? 아니면 4권도 충분하다 보시는지요~?
도형은 중학교 교과서도 봐야 합니다. 어렵지는 않으니까 금방 끝나요~