[물리학2] 빗면에서의 중력끄기
맨날 비생산적인 뻘글만 쓰다가 유익할지도 모르는 글을 써보는건 처음이라 읽기 불편할수 있음
일단 포물선 운동하는 물체의 변위를 초기 속도에 의한 벡터와 중력가속도에 의한 벡터의 합으로 나타낼수 있다는 사실은 너무 유명해서 다들 알고 있을거임
흔히 중력끄기라는 스킬로 알려져있음
근데 이걸 빗면에서 운동하는 물체에는 어떻게 적용할수 있을까?
경사각이 θ인 빗면에서 등가속도 직선 운동하는 물체에 작용하는 힘은 중력과 수직항력의 합력이고 가속도 gsinθ로 운동함
따라서 빗면에서 초기 속도 v로 운동하던 물체는 '중력가속도에 의한 벡터'를 다음과 같이 나타낼수 있음.
어떻게보면 너무 당연하고 간단한 사실인데 이걸 문제에 적용시켜보도록 하자
22학년도 수능 15번
이건 사실 그냥풀어도 개쉬운 문제긴 한데 위의 사실을 적용시켜서 풀어보겠음
물체 A를 p에서, 물체 B를 q에서 동시에 발사했더니 r에 동시에 도달한 상황임. 이때 A는 r에서 최고점이니까 A의 '초기 속도에 의한 벡터'는 빗면 위의 높이가 3h인 점 s까지 그을수 있음.
근데 두 물체가 같은 시간동안 운동했으니까 '중력가속도에 의한 벡터'는 둘이 같지 않을리가 없음. 따라서 sr' 벡터가 빗면에 수직임
그림에서 3hsinθ^2=h이므로 빗면의 각도 sinθ=1/sqrt(3)을 알수있고, 식을 잘 정리하면 v=sqrt(3gh)이므로 답은 2번임
이번엔 좀 어려운 문제를 풀어보자
지금은 내려간 옆1동네 출처의 어떤 N제 문제임
일단 (가)를 먼저 그려보자
이 문제 역시 동시에 출발해서 수평면 위의 같은 점에 동시에 도달한 상황임. 그러면 A의 출발점에서 B의 '초기 속도에 의한 벡터'의 종점 P까지 이으면 그게 빗면에 수직일수밖에 없음
마찬가지로 (나)에서도 동시출발 동시도착이니까 B의 '초기 속도에 의한 벡터'의 종점 Q는 그림과 같이 되어야 함.
여기서 중요한 사실 하나를 알수 있는데 닮음비로 잘 생각해보면 '중력가속도에 의한 벡터'의 크기 비가 (가):(나)=3:1임
따라서 시간비는 sqrt3:1인것을 알수 있음
이건 말로 설명하기가 좀 어려운데.. 대충 A의 출발점을 R, B의 출발점을 S라 하고, X는 Q랑 높이가 같은 점, Q'는 Q랑 같은 연직선 위에 있는 점으로 그림과 같이 정하겠음
그러면 SQQ'랑 SPR이 닮음비가 1:3이고, QQ'=XR=1/sqrt(3)v0t임
이번엔 삼각형 QPX를 보겠음. QX=sqrt(2)/sqrt(3)v0t, PX=2/sqrt(3)v0t니까 sinθ=1/sqrt(3)임
이제 빗면의 각을 구했으니까 상황이 매우 간단해졌음. sqrt(3)v0t=2h, 1/2gt^2=h니까 식을 잘 정리하면 답은 2번임
이 문제는 예전에 썼던 풀이(https://gall.dcinside.com/mgallery/board/view/?id=physics2&no=4629)가 있긴 한데... 너무 생략을 많이 한거같아서 다시 써봄
질문할거있으면 댓글 ㄱㄱ
사실 이 내용 이미 알고있었을 분들도 많을거같긴 한데 그냥 심심해서 정리해봤어요
올해 수능에서 물2러분들 다들 좋은 결과 있으면 좋겠습니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
배가 고파요 0
밥 내놔
-
왜 클릭
-
엉엉
-
ㅇㄷㄴㅂㅌ ㅋㅋ
-
몇 명 안 뽑는 소수과라 볼 때마다 피말리네 점공에 없는 지원자들까지 생각하면 ㄹㅇ..불안
-
황벨
-
ㅇㅈ 17
부엉이는 웃고있다
-
ㅇㅇ?
-
왜클릭
-
오랜만에 ㅇㅈ 13
광년이 버전으로다가
-
삼각형 ABC의 두 변 AB,AC에 내린 두 중선이 서로 직교한다....
-
자랑하나만할게요 2
캬
-
25수능 백분위 언매 92 미적 98 영어 2 물리1 94 화학1 97
-
여르비도아니고....
-
어그로 ㅈㅅ 쌍카풀 짝짝인데 쌍카풀 제거 수술도 있나요? 있다면 비용도 쌍수만큼 들련지요.
-
뭐 중앙대중앙대 거리더니 사실 불교엿음?
-
인증 못하는 얼굴이면 개추 ㅋㅋㅋ ㅇㄷㄴㅂㅌ
-
반수한다는 소식 뒤로 연락 두절 ㅠ.. 오르비는 계정만 있고 활동 없으시고 옯스타도...
-
가즈아
-
https://youtu.be/7IYlt_OcdVE?feature=shared
-
차라리 미적 → 기하 로 하고 과탐하는 건 어또련
-
사이테스 부속서 1에 속하는 풀떼기입니다 국제상 멸종위기종에 속해서 서류를 많이...
-
내 인생 신조 4
누군가 너에게 해악을 끼치거든 앙갚음하려 들지 말고 강가에 고요히 앉아 강물을...
-
오늘 새르비 땐 너무 거친 말을 많이한거 같음... 7
사실 현생친구 중에 중앙대 다빈치캠에 간 애가 있는데 걔가 올해 초에 지방교대를...
-
고3 커리큘럼으로 일등급수학을 푸는데 이게 맞나요?
-
중평 2
그만 낮추세요 (다군 중대일동)
-
숭배합니다 기공이면 높공 맞지 ㅇㅇ
-
대 건 공
-
탕후루 사주세요 ㅠ
-
오노추 3
그저!!!귀여운!!!!츠보미였어!!!!
-
연세대 앞 ㅇㅈ 14
무서우니까 코입은 가리는걸로
-
저 삼수하면서 올해 첨들어와요
-
꾸준글 아님
-
ㅇㅈ 11
미국도서관에서 3수준비중..하
-
아니 뭐 저장했다는건 아닐수도있고~
-
다들 ㅇㅈ하는데 7
혹시 지인들이 보면 어쩔라그래
-
중대애 차렷 1
의뱃을 향하여 경례!
-
ㄹㅇ
-
ㅇㅈ 10
망고빙수
-
성인인데 머리 그렇게하면 급식샛기같고 온갖 외관적 디버프만 받는데 왜 하는거야...
-
지금 사람 별로 없나요?
-
노래방보단피시방이재밌지
-
본 사람 또 보고 ㄹㅇ;;
-
포근한 느낌
-
이 또한 의대아니면 안가시는분의 은혜겠죠
-
자고 싶은데 2
ㅇㅈ 봐야 해ㅠㅠ
-
도태 안되고 갈려면 웃길 수밖에 없겠죠…?
-
ㅇㅈ 1
저도 덕코주세요
진짜 개고임;;
현T 수업 들으심?
아니요
귀요미!귀요미!귀요미!
어이x
그는 신인가?
않입니다..
이..이게머노
몰?루
오 26됏다
와 이거 물올때 많이 했었는데..7ㅐ추 벅벅!
물올에서도 많이 쓰이는 스킬인가요?
기억을 잃었어요 엉엉
역학: 힘에 대한 학문 -> 힘 분석만 해도 반은 먹고 들어감
을 단적으로 잘 보여주시네요 잘봣습니다 ㅎㅎ
이 스킬 오랜만에 보네
물2게이야...
물2러 국민스킬이죠
올해도 물2해야될지 물1으로 빤스런할지 고민이네요...ㅋㅋ
혹시 첫번째 문제에서 3h가 갑자기 나온게 이해가 안되는데 설명 해주실 수 있나요?