[SOS]문돌이 빡모 문제 해설좀 부탁드려요 ㅠㅠ
총 5문제 부탁드려요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그렇다고 735 일케써도 게이임뇨 6칸 이상써도 게이임뇨
-
퇴근 0
-
수능날 이야기) 님들 저 삼반수 하는거 진짜 오바임? 1
진짜 내 만족하는 정도가 그리 높지도 않고 광명상 한서삼 만 가도 만족함 진짜...
-
구라가 아니라 진짜라서 포스터로 가려야 하는데 둘 중에 뭐가 나음
-
허거거걱
-
얘는 대체 뭔 새끼지 이런느낌으로 볼거같은데 유머도 재미없고 걍 글자체가 재능이...
-
지금 1등도 3칸 뜨는데
-
cc면 그거 반영해서 점수 보여준거? 칸수랑
-
한양 인터칼리지 3
냥대에서 진학보다 텔그가 짜게주는 유일한 과인듯
-
디파잉 그래비티 나올 때 전율이
-
투데이 왜이러지 11
다시 옯창의 삶을 살게 되,,,~~~~~
-
모 약대 근황 6
1등 3칸
-
영어평균 2뜨는데 이명학 션티 조정식중 뭐 들을까요?
-
어차피 아무리 스나시도해도 안될거 명예롭게 죽을게...
-
내신반영에서 혹시 모르니 틀린과목 하나만 다시 응시할까요? 생윤 마킹 잘못해서 만점놓쳤음..
-
지1 어떤지 물어봤는데 안 알려주네요 ㅋㅋ 접수자 수랑 응시자 수 비교해보려고 했는데... 까비
-
개열받는데 7
애가 아프니깐 머라고 못하겠뇨..
-
진짜개심심하네 6
할게없음뇨
-
평백 87인데 영어 4라 국숭도 힘들어보임..
-
발목에 지금 모기 물린거같음 어떻게 걸어다니냐
-
내 친구 4개 틀렸는데 설 경제랑 경영 추합이 말이됨?
-
26수능 21111 가자 제발
-
컷 그만 올려~~~
-
더이상 안할거라는거임 정뚝떨
-
뭐가 문제인거냐
-
건대 낮과 갈 수 있을까요..
-
수능 세번 봤는데 세번 다 칸수 안떨어짐 참고로 실채 전엔 오히려 4~5칸 왔다갔다했음ㅋㅋ
-
동덕여대는 근데 0
대충 5년잡으면 대중들 사이에서 잊혀질것 같은데 현 3,4학년들만 손해보고 나머지는...
-
수능준비함
-
진짜존나어려움
-
누가 빨리 병원이나 상담이라도 받으러 데려가셨으면
-
진학사로 잡친 기분 텔그로 정상화 이것또한 윤도긩의 은혜겠지요~
-
제발
-
내인생을 불확실성에서 약간만이라도 해방시켜달란말이다...
-
상,하 쎈 대표문제,예제는 다 풀수있음. . . 몇몇 좀 어려운 상 문제들 빼고는
-
바지 뭐사지 3
바지
-
오늘 간식 0
식사로 치면 2식
-
공통 도형 문제 보면 풀 생각에 설레기까지 하는데 그럼 기하가 운명이겠죠
-
머지 내꺼는 1
단한개도 칸수 바낀게없는데 나만 업뎃안댔나
-
개같은 인생을 살고 있다
-
중논 1번 요약 0
마지막에 요약 안하면 필히 떨어지나요?
-
영어...영어....
-
먼저 올해 무휴학 반수를 할생각이고 25수능에선 생1을 선택했고 아쉽게...
-
자연계 문제 어땠나요? 지원자 많아서 난도 높인다는 예측 있길래
-
ㅋㅌㅋㅌㅌㅋㅋㅌㅋㅌㅋㅋㅌㅋㅌㅌㅋㅋ 덱스냉터뷰 보는중,,,
-
1. 88인데 미적 1틀이니까 표점 좀 높게주겠지?? 실체점 나오고나서 대학별...
-
네.
-
저번에 3일 동안 아침 점심 저녁 다 국밥 먹었는데 3일 식비로만 9만 원...
30번 확률문제는 직접 수형도 그리면서 하셔야 됩니다. 동전을 a b c로 놓았을때 첫번째 시행을 a로했을때 14가지가 나옵니다. 거기에 각 경우를 고려하면 경우의수는 3x2x14가 됩니다.
21번 삼차함수 나오는 거는 그래프개형의 여러 가지 경우를 잘 고려해야됩니다. ㄷ은 솔직히 말로 풀어 설명하기가 어렵네요. 2f(1)을 직사각형의 넓이로 보셔야합니다. 3-1(밑변)xf(1)(높이)라는걸 고려해서 풀어보세요.
나머지는 저도 아직 못풀어봤거나 남한테 설명하기엔 이해가 완전하지 못해서..... 부족하지만 조금이라도 도움됬으면 좋겠네요
아니에요....도움 많이 됬어요!! 귀한시간 내주셔서 정말 감사합니다!!
우선 맨 위의 27번, 맨 아래의 20번을 제외한 나머지는 한 번씩 풀어봤는데요,
8번 행렬문제의 ㄷ선지는 귀납법을 사용해보세요. n=1일 때, (AB)^1이 M에 속하므로 AB=E=BA가 성립하죠?
다음으로 n=k일 때 ㄷ이 성립한다고 가정하고 n=k+1일 때를 따져봅시다.
n=k+1일 때, 좌변은 (AB) x (AB)^k와 같이 정리할 수 있고 우변은 B x (AB)^k x A와 같이 정리할 수 있습니다.
n=1일 때 AB=E=BA임을 알았으니까 (AB)^k=E로 놓으면 AB=BA가 나옵니다.
30번 확률문제는 사실 확률보다 경우의 수를 중점적으로 다룬 것 같네요.
세 개의 동전을 (H, H, H)와 같이 일종의 순서쌍으로 두세요.
그리고 수형도를 그리시면 되는데, 수형도를 그리시다보면 일정한 규칙성을 보고 간소화해서 푸실 수 있을 겁니다.
결과적으로, 6회째 (H, H,H)가 되는 경우의 수는 3x{2x(7x2)}]=84가 나옵니다.
21번 미적분문제는 y=(x-1)(x-3)(x-a) (단 a>3) 그래프를 그려보시면 ㄱ, ㄷ 둘 다 해결하실 수 있을 겁니다.
개인적으로, 반례가 되는 함수를 찾을 때에는 x좌표의 범위를 활용하면 효과적이더라구요.
좋은 팁 알려주시고ㅠㅠ귀한시간 내주셔서 감사합니다~~
27번은 아래 FA14님이 푸는방법을 알려드렸으니 차치하고, 맨 마지막 20번 문제도 풀어보았는데요,
ㄱ선지는 로그함수와 분수함수에 각각 √2와 2를 대입한 함수값을 비교하면서 답을 찾으셨을거라 사료됩니다.
ㄴ선지부터가 중요한데요, 글쓴 분께서는 그래프로 푸시려고 한 것 같네요.하지만 대개 이와 같이 좌표를
활용하지 않을 경우, 답에 오류를 포함할 가능성이 높습니다. 좌표와 식이 주어져있다면 최대한 활용하세요.
주어진 조건을 통해 f(2) = log a (밑 2는 타자로 못치니까 생략해서 쓸게요) = 1/a임을 알아내셨을 겁니다,
따라서 -1/a = -log a를 얻어낼 수 있고 좌변의 f(x)의 역함수에 -1/a 대신 -log a를 대입하면 f(-1/a) = 2^-loga를
얻어낼 수 있습니다. 로그의 성질에 의해 2^-loga = a^-1이 되므로 ㄴ선지가 맞는 선지임을 알 수 있습니다.
ㄷ선지의 경우는 조금 더 복잡한데요, log b(여기서도 밑인 2는 생략해서 쓸게요) = -b, log a = 1/a를 이용합니다.
log a - log b = log a/b = 1/a + b이므로 f(a/b) = f(2^1/a+b) = 1/a + b가 나오는데요,
ㄱ선지를 통해 얻은 1/2 < 1/a < 1/√2를이용하면 1/a + b < √2가 되기 위해서 b는 √2/2보다 작아야함을 알 수 있습니다.
y=f(√2/2)와 -√2/2를 비교해보시면 f(√2/2)가 -√2/2보다 크다는 결과를 얻으실텐데요(그래프 비교), 이를 통해
b가 √2/2보다 작음을 증명해낼 수 있습니다. 따라서 1/a + b
복사해서 얼른 다시 풀어볼게요!! 정말 감사합니다!!
맨 위에 27번은 (1/2)^c+1 이것은 1/2 이 밑인 지수함수를 -1만큼 평행이동한 것이기도 하고, 평행이동 하기전에 같은 x값에 대해서 y 값이 1/2만큼 줄어든다는 것을 의미합니다 따라서 1/2만큼 y값이 줄어들어들어도 그 해의 범위가 일치되려면 log 함수의 밑이 제곱이 되어야 합니다 그런데 2, 3의 제곱인 4,9일경우에는 옆에 경계값을 함숫값으로 가지므로 이를 제외한 나머지 수 5,6,7,8 가 되어야 하기에 답이 26이 됩니다.
삼차함수옆에 있는 삼각형 넓이 계산문제 (20번)는 한 문자에 관해 정리하고 나서 제곱을 벗겨낼 때 부호에 유의하면서 계산해주시면 됩니다.
ㅠㅠ문돌이 구제해주셔서 감사합니다 ㅠㅠ복받으실거에요~~님풀이대로 한번 다시풀어볼게요!!