테일러 급수
테일러 급수가 있잖아요...
이거요
이건 고등학교 수준에서 증명 못하나요??(그러니까 막 몇페이지씩 가는게 아니라 10줄정도에서 저거에 관한 정보를 주면 풀수있을정도)
저희학교 선생님이 저걸 학교시험에 낼수있다고하시네요(단순히 겁주는게아니라 여태까지 저런문제를 서술형에 수리논술처럼 내셨습니다. 그래서 이 선생님이 내신 문제 100점이 딱한번 나왔습니다 ㅠㅜ 고2수학이 걱정되네요...이 선생님이 내는 수학이 5단위인데...)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
텔그에서 90퍼대였던것들 6칸떠서 복학각잴까 진지하게 고민중이었는데 업뎃후로 7~8칸댐
-
라고 하는 새끼들이 얼마나 개빡치는 소리를 했던 건지 이제야 깨달았다... 하 내...
-
삼수할려면 군연기 따로 신청 해야함? 아님 그냥 알아서 삼수하고 군대 가면됨?...
-
어디서 보면 월400 어디서 보면 월700 메디컬쪽은 사람들마다 말이 다 다르네
-
더 이상 오르면 곤란합니다..그만그만????????
-
수행하기싫 2
-
니게tv 34일차부터 올릴만한 아이돌 추천받습니다. 0
33일차(내일) 트리플에스 종료, 34일차부터 올릴만한 아이돌 추천받습니다,
-
6평 백분위 100, 9평 백분위 99, 수능 예상 백분위 100인데 수학과외...
-
큰일났음 1
비기너스 듣고있는데 이번에 비기너스 개정되면서 기존 강의 내려갈 가능성이 있다네요 어쩌지..
-
처음들어봐요
-
어떤 삶일가..대학와서 찡그 다 사라짐
-
맞팔 구해요 12
금테 미쿠가 되고싶은 밤이네요 잡담태그 잘담!!
-
드디어ㅠㅠㅠㅠㅠ 다시는 비누로 목욕시키지 않을게
-
대구의 왕 1
-
왜 미적 만점받을 실력도 안되면서 만점표점따지고있었을까
-
피곤 0
곤피
-
ㅇㅈ 4
저녁 ㅇㅈ
-
본연의목적을잃고 뻘글러가됏네...
-
지금 문자알림신청 해도되는건가요? 아님 1월달 가서 신청이 열리나요?
-
실모 관심 있는 분은 쪽지주세요
-
종강을 바란다
-
일본 가보고싶다 6
그치만 혼자가면 국제미아가 될 것이에요...
-
그거 어떻게 됨??
-
일본어 잘 하시는분? 15
유진 이랑 도모다찌가 무슨 차이에여?
-
왜 룩이 대각선으로 움직여 ㅋㅋ
-
안녕하세요. [하제맑음] 총괄 팀장 김다온입니다! 오랜만에 인사 드리는데, 어떤...
-
그게 나야 바 둠바 두비두밥~ ^^
-
댓 달면 제가 만든 9시간짜리 플리 (134곡) 드림 보카로곡이 대부분에 +...
-
불구리를 으흐흐 0
-
건설어쩌구 과빼고 전공예약은 수시만 되는건가..?
-
부어있는거 졸귀
-
원래 컨설팅 업체 한 곳은 선예약해둔 곳이 있었는데, 개인적으로 가격이 생각한...
-
심리적 안정을 위해서…?
-
뭘해야 잘 놀았다고 소문이 날까.....
-
일주일 안간거같은데 근데너무피곤함 기말까지 겜을 끊어볼까
-
알바퇴근 10
-
너무 끄끄느낍인가
-
문해원 들었는데 신택스도 들어보신분 있나요 서로 스타일 달라서 별로일까요
-
맞팔9 2
잡담 잘걸어요..
-
수능 미적 3컷 1
공통 6 14 20 21 22 틀리고 미적 27 28 29 30 틀려서 66점...
-
아빠가 찢갈이라 아빠랑 위증교사 선고 내기했는데 무죄나와서 씨발 10만원 뜯기노 좇같다 ㅋㅋㅋ
-
불법으로 만들어줘
-
보통 언제 하나
-
변표?? 4
제가 알기론 인서울에서 서울대 홍익대 빼고 다 탐구 백분저로 적용한다고 알고있는데...
-
수능말아먹어서 올리기 좀 부끄럽지만 혹시 라인잡아주실분 계신가요.. 학과는 건축학과...
-
미적분 문제집 1
시발점 들으면서 개념 다지고 있는데 뉴런 나오기 전에 공백이 너무 큰것 같아서...
-
영어제시문 독해를 제대로 못하는 학생들이 많아서 논술선생님은 영어제시문을 어떻게...
선생님께서 쓸데없는걸 가르쳐 주셨는데다, 제대로된것을 가르쳐 주지 않으셨네요. 저건 테일러 정리라기 보다는 [각 함수의 n차 테일러 다항식]이라고 부르는것이 정확한 표현입니다. 테일러의 정리는 특정 함수별로 정해져 있는것이 아니라, 일반적인 식으로 유도되어 있습니다.
정확한 증명과정은 고교과정 이상의 것이 필요할것 같네요.
아, 이걸 어떻게 설명하면 좋을까요.
메일 주소를 적어드리면 정확한 증명과정과, 진짜 테일러의 정리가 뭔지 증명과정과 함께 적어서 한글문서를 보내드리죠.
원리는, 어떤 특정 함수의 한 점에서 접하는 일차함수를 정하고, 그 점에서만큼은 특정 함수와 일차함수의 형태가 동일하므로 그 접선의 방정식을 1차근사식이라고 부릅니다. 이 논리를 n차로 확장시켜 보낸것이 n차 테일러 다항식(n차 근사다항식)이라고 하며 현재 님께서 작성하신 테일러 급수라고 불리는 것입니다.
메일주소 적어주세요. 보내드릴게요.
제대로 안가르쳐주신게아니고 제가 이름을 몰라서 ㅋ큐ㅜ
선생님은 e^파이i=-1 이란걸 가르쳐주셨는데 저희가 대충 설명해달라고하셔서 저런게 있다라고만하셨어요(이름은 안 알려주시고)
suvupthesky@naver.com 으로 보내주시면 감사하겠습니다. ㅠㅜ
오일러 공식입니다. e^파이*i + 1 = 0으로 많이들 쓰지요.
수학자들이 가장 아름다운 공식으로 뽑기도 합니다. 자연을 의미하는 수치인 자연상수 e, 완벽함을 의미하는 원을 상징하는 파이, 모든 수의 처음을 알리는 1, 무한의 반대개념인 [없음]을 의미하며 다른 숫자들과는 상당히 다른 0 모든게 있지요. (물론, 가져다 붙인 감이 없지않아 있습니다만....) 그 내용은 [고급수학]에 있습니다.
아니, 그냥 교재를 통채로 드릴테니, 테일러 급수와 오일러공식 모두 찾아서 보시죠. 재미있을겁니다.
제가 고급수학 교재를 보내드리겠습니다. 그 중 7차 개정 전 고급수학을 찾아보셔서, 소단원 중 테일러급수를 찾아보시면 될겁니다.
솔로깡님 저도 고급수학 보내주실 수 있나요?
ehdghks709 nate com 가능하다면 부탁드려요..
감사합니다.
??
원리는, 어떤 특정 함수의 한 점에서 접하는 일차함수를 정하고, 그 점에서만큼은 특정 함수와 일차함수의 형태가 동일하므로 그 접선의 방정식을 1차근사식이라고 부릅니다. 이 논리를 n차로 확장시켜 보낸것이 n차 테일러 다항식(n차 근사다항식)이라고 하며 현재 님께서 작성하신 테일러 급수라고 불리는 것입니다.
이건 뭔 개소리냐;;
테일러 정리는 평균값정리를 확장시킨거야
글 전부 지웠습니다~~!
임의의 다항식으로 두고 차례대로 미분해가면 일반항 구하실수 있을거에요...
f(x) = a_1 + a_2x + ....
하고 차례대로 미분해가면서 ..