올해 가형 21번 풀이에서
문제풀면서 y=x 그래프를 도입해야되는걸 어떻게 생각하나요?
문제풀면서는 당연히 y=x그래프 기준으로 하는건 맞는데, 문제 처음볼때 그게 당연히 생각나는건가요? 다들 처음봣을대 어떻게 푸셧는지 ??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 8
재밌긴했음
-
수능끝났고 하고싶었음
-
빨리 내 옯스타 디엠으로 인증한 사진 보내놔라. 이상.
-
ㅇㅈ 2
-
ㅇ....ㅈ 10
이사진 5조 5억년만에 꺼내는느낌
-
너무 많이 한듯? ㅇㅈ?
-
이게머노
-
아니 왜 나만 5
은따당하고 잇엇뇨
-
ㅇㅈ 6
처음으로 봤는데 존잘이라서 기분 좋네여
-
걍 죽을게
-
왼쪽눈 충혈됨
-
네
-
1시 54분이다 빨리 이불덮고 들어가자라 나는 좀 더 있을게
-
잔다 4
-
감상적이게 되네 좀
-
ㅇㅈ 23
다섯번째 재탕이지만 그냥 보십쇼……….
-
시간의흐름이
-
이러면 여자드리 조아하겠지
-
잔다 4
피곤해
-
오랜만에 뻘글 ㅈㄴ 썼네
-
중독성있음
-
ㅇㅈ 8
이거저임..
-
근데 왜 화나지? 진정한 나의 성적 취향을 알아버린건가
-
아 다놓침 0
걍자러감 ㅂㅂ
-
이투스랑 안한다매
-
광속에 가까운 속도로 운동하는 고정된 좌표계에서 바라보는 상대적인 길이가...
-
10년동안 들음
-
퇴물됐네,,
-
아 1600년대 수능에 나왔으면 킬런데...
-
난 여자인데 9
왜 잘생겼다하는데
-
나를 허락해줄 대학이란 손쉽게 입학하는 편하고도 감미로운 공간이 아냐
-
과거의 아픈기억을. 돌아보는 느낌이라 지켜주고싶음
-
ㅇㅈ 11
오조오억년동언 똑같은인증만하는중
-
나를 허락해준 세상이란
-
ㅇㅈ 5
전에했던건데 근데진짜사진이없음 이런거밖에..
-
정보) 그래 그리 쉽지는 않겠지는 극장판에만 나온다 2
어드벤처 본편에 나오는 노래는 찾아라 비밀의 열쇠(오프닝)이랑 파워 업 등이 있는데...
-
먹고싶다
-
이런거 구글에 쳐보는데 ㅠ . . .
-
와 개 무섭네 7
무슨 모밴이 30초도 안 돼서 좋아요가 5개가 박히냐
-
안올라가뇨
-
디지몬 어드벤처 존나 띵작인데
-
800은 들 줄 알았는데
-
사람이 신기한게 0
에리카 들어올 땐 신안산선 생기면 입결 오를 것 같았는데 반수한다고 대학 나오니...
-
내취향 여캐일러 투척 12
-
진짜 노베고.. 노베면 이명학 일리부터 듣는게 좋을까요? 아니면 조정식도 괜찮은가요?
-
먹어야지 우우
-
. 0
.
-
ㅇㅈㅎㅈㅅㅇ 9
착석
-
대학 좀 보내줘 2
나 대학가야된다고 ㅠㅠㅠ
가까운 쪽을 그린다고 했으니까 기준선을 그려야죠 ㅋ
그러다 보니 교점을 생각해보게 되고..
여담이지만 ㅋㅋ
저는 이문제 풀때 문제 읽다가 "~~~때문에 y=x 랑 접해야겠군" 이러고 푼게 아니라,
"혹시 y=x랑 접해야 하지지 않을까 ? " 라는 생각이 먼저 떠올랐어요.
그렇게 해서 답 구해보니 정답에 있길래 그냥 체크하고 넘어갔어요 ㅋㅋ
약간은 운에 의존한 감이죠 ㅋㅋ
네 님 잘못은 아닌데
이런 점 때문에 21번 문제가 좋은 문제 같지는 않아요
y=x랑 접해야 하는 이유에 대해서 치열하게 생각한거나
다른문제 신나게 풀고나서 '접하는거 아냐' 하고 푼거나 같은 결과를 얻는다는것이죠
작년 변곡점 문제 같은 경우 대충 생각하면 절대 답이 안나오는 문제였는데
비교적 이번 문제는 별로라는 생각이 드네요
저는 시간이 너무 촉박하길래 그정도도 아니고 아예 x가 음수일때는 생각조차 하지 않은 뒤 x가 양수일때 y=f(x)와 y=x가 한점에서 만나야겠다 해가지고 f(x)=x 식 세운 뒤 그래프로 풀었음.. 다행히도 답이 바로 나오더라구요 ㅋㅋㅋ
x축까지의 거리:lf(x)l, y축까지의 거리:lxl이고 y=f(x)니까 y=lxl를 그려보게 됨.
x축까지의 거리와 y축까지의 거리를 비교해야되니까 바로 y=x 그래프를 그려야겠다는 생각까지는 들었죠...그리고 f(x)를 그려보니 x가 음일때는 생각할 필요가 없다고 생각했고 x가 양일때를 생각해보니 '아, 접해야 되지 않을까??'라는 생각이 문득 들었어요...사실 이렇게 푸는게 올바로 푸는건 아니지만 접선에 방정식이라는 테마에 대해서는 평가원에서 지겹도록 반복해서 출제했기 때문에 이문제를 풀면서 이것도 분명히 접선문제라는 확신 아닌 확신이 들었죠...
사실 정당한 방법은 아니지만 이런 '확신 아닌 확신'이라도 얻기 위해서 기출문제 반복이 중요하지 않나 생각해봅니다....자기변명이죠ㅋㅋㅋㅋㅋ
lxl와 lf(x)l중에 더 큰 값이라고 했잖아요.
함수의 대소를 확실하게 , 쉽게 보여주는게 그래프니까 그래프 관점에서 접근했어요