이번 6평 타원문제
왜 p랑 q랑 x축 대칭점인거죠?
그리고 타원은 두 초점이랑 연결한 타원위에 점이 직각인 점이 타원에서 총 4개인가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진실을 부정하고 싶은단계라 의심되는쪽이 맞더라 보통은
-
사탐 99 97인데 변표 뜨고 막 밀리진 않겠죠... 하아 고속에서 연초떠서 너무 불안하네
-
오르비에 인증할정도면 다 평타는 치는데 하…
-
어케해야 뻥튀기
-
예
-
친구가 강하 목동 지원 넣어뒀는데 저번주에 대게 30번 받았댔음. 가망있나요
-
없으면조용히해라
-
미지메타로구나 4
난 월반 고능아 대학원생 이미지 할래요
-
이미지적어드림 23
닉네임 프사 보고 적어드림 틀릴 확률 98프로 츄라이
-
과외 1년차 4
올해 2월부터 과외시작해서 과외생 총 8명 잡았습니다 언제한번 과외칼럼을 써보겠습니다
-
숭실 경영경제 7,8칸뜨는데 건동은 거의 안되고 홍 낮과 5칸뜸ㅠ 건동홍...
-
이미지(진)해드림 13
랜덤뽑기
-
많이 들어봄..... 카페 알바하던 (별로 면식 없는) 후배가 교수님이 지도제자...
-
이미지 적어줘 40
ㅎ.ㅎ
-
진짜 이미지 적어드림 80
이미지 이딴 3글자 말고 찐으로 츄라이츄라이 똥싸고 샤워하고 나서 하나씩 차근차근...
-
저기 흰색 친구
-
계속 달려야하나.... 더 있는데... ..
-
피램 풀커리로 독학하고 기출, 모고 등등 푸는걸로 충분할까요?
-
함수추론 자작문제 11
완성형 문제라는 생각이 안들어서 공유해봅니다 21번 정도의 난이도 같네요
-
살빠진 이준석이라고..
-
! 은 어그로고요...죄송합니다.. 경희대 국캠은 설캠이랑 다른가요? 분위기가 살짝...
-
탑 - 페이커 정글 - 운타라 미드 - 구마유시 원딜 - 오너 서폿 - 도란 ㄹㅇ 현준듀오
-
멍청한데 자기주장이 강하면 안된다 멍청한데 자기주장이 약하거나, 똑똑하고 자기주장이 강해야 한다.
-
아침-생략 점심-개미1친집밥 밥 좀 남김 저녁-닭가슴살샐러드/미니고구마/단백질쉐이크...
-
먼가 재밌을것같음
-
탐잘한테 유리한거임?
-
번따비추.... 3
현실적으로 첨본사람이 번호달라그러면 씹존잘남이 아닌이상 안받아줄듯 평범해도 훈훈해도 좀 찝찝하잖어
-
성대 학생들한테는 딱히 악감정은 없지만 보통 우리과 A비율이 20~30에 B비율이...
-
제 첫 썸은 3
엑셀에서 배운 sum함수였답니다.
-
강릉 경포해변<---여기어떰?
-
프리한 삶 살기 0
내맘대로 살기
-
윈터스쿨대기자 0
현시점에서도 대기자 빠짐?? 친구가 신청했는데 강남하이퍼 목동 윈터스쿨 대기...
-
난 고대가 더 칸수 잘나오는데 ~영어 2등급이라 연대는 좀.. 이러면서 연대...
-
9명 뽑는 과이긴 한데 이정도면 발뻗잠 될까요...??
-
10년전에 가입한 사람 16
근데 곧 11주년인
-
1. 실제 아웃풋보면 아주, 인하랑 비슷한 수준 2. 인서울대학중 1인당...
-
어떻게 생겼는지 짐작이 가시죠….
-
난 들어봄
-
생1 커리 질문 0
작년에 섬개완 한번 돌려서 이번에 스개완으로 빨리 복습하고 상크스를 들어가려 했는데...
-
지듣노 4
원신 맵 파먹다가 갑자기 생각나서 듣는 중
-
맞팔사람 8
구함!
-
연대식 702 고대식 674인데 어떻게하란말이오 영어 2이상이면 연대로 가시란말이오
-
내일 기말인데 2
오늘 공부 하나도 안함ㅋㅋ
-
일단 지금 너무너무 불안해하진 않아도 괜찮겠죠…? 지거국 하위고 백분위로만 환산하고...
-
뭔가 평가원 기출에 한번 나온 작품같네요 ㅋㅋㅋ
-
엄마가항상사줬었거든 어무이감사합니다
-
난 닥전이라 생각했는데 막상 겪어보니 좋아하는사람 생기면 전자는 눈에도 안들어오더라
-
덤벨시킴 홈트 좀 더 빡세게
-
가군 고대 상향 지를건데 ㅠㅠ
-
화이트 데이는 맨날 까머금. .... 나한테 중요하지 않은 날이라 그런가
두 초점간의 거리를 지름으로 하는 원을 그려보거나
두 초점에서 타원 위의 한점을 바라보는 각의 변화를 살펴보거나 하시면 됩니다.
아니면 타원의 중심에서 각점까지의 거리가 5인 점은 4개밖에 없죠..
1. 문제의 상황(가정) x^2/a^2+y^2/b^2=1과 x^2+y^2=1이 점 (p, q)에서 만난다. 단 (p,q)는 1사분면
점 (p,q)는 타원의 식도 만족하고 원 위의 식도 만족한다.
여기서 (p,q) 의 y축 대칭점 (p,-q)도 두 방정식을 만족한다. (점이 2사분면에 존재할 때도 마찬가지) 증명 끝
2. 문제의 상황은 1과 같음.
식을 조작하여 x에 대한 2차방정식을 만들 수 있고, 이 방정식의 판별식이 0보다 크다면 x의 근은 2개가 존재하고
각각의 근에 따라 (1의 결론을 적용하면) y의 값을 2개가지므로 총 4개의 순서쌍을 가짐을 알 수 있다.