[박주혁T] [2020ver.] 미적분 공부,제대로 하고있나요?
안녕하세요? 오르비 클래스의 수학강사 박주혁입니다.
수학관련 칼럼은 괜찮은 글이 진짜 안올라오네요ㅋ
국어만 계속 올라오고요^^
그리고 1월의 매우 바빴던 윈터가 끝나고,
1월에 상담하면서 느꼈던 바를 오늘 글에 반영하여
이번에도 미적분1 관련 글을 써보려고 합니다.
우선 아래 칼럼은 이 글을 읽기 전에 한번쯤
보시면 좋은 글입니다.
(생각해보니 매년 초에 미적1 관련 글을 썼네요)
================================
[2018ver.] 미적분1, 안할거니?
https://orbi.kr/00010595728
[2019ver.] 미적분공부, 잘하고 있습니까?
https://orbi.kr/00016124505
================================
오늘은, 미적분1에서의 "함수의 극한"에 관련된 글입니다.
우선 기출문제를 하나 보죠.
정답은 믿고 찍.....
제발 이런거 찍기말고 풀어봅시다.
암산이 됩니다. 5번이지요.
그리고 함수의 극한의 가장 기본과정인,
무한대로 갈때는 최고차항 관찰 / 0으로 갈때는 최저차항 관찰
인 거죠 뭐. 별거 없습니다.
(강사들이 심화개념이라고 하는게 사실 별거 없듯이 말이죠)
그럼 이번엔 이 이야기를 하겠습니다.
====================================
아래 문제의 상수 p 의 값을 예측해 봅시다.
(단, f(x) 는 최고차항의 계수가 1인 4차함수 )
====================================
금방들 하시죠?
f(x)= x4 + ax3 + bx2 + cx + d 라고 하면, 금방 답이 나옵니다.
이해가 금방 되시죠?
(x가 0으로 가니까 최저차항을 관찰한다면 나오는 거니까요)
그럼 이 문제도 금방 하실수 있습니다.
===========================================
===========================================
그렇죠, x-1=t 로 바꾸면
이렇게 바뀌니까, 위의 문제와 같은 구조라서
(바로 이해 안가시면 다시 위의 구조를 보세요)
s=t=q=0 , f (t+1) = t3(t+p) , p≠0
즉 f(x) = (x-1)3 (x+p-1) , p≠0 인 거죠.
그럼, 이제 진짜 훈련 문제를 풀어보겠습니다.
문과는 (1)번만, 이과는 (1),(2)번을 모두 풀어보시면 됩니다.
======================================
(1) 문/이과 모두용
(2) 이과용 (2018 6월 평가원 21번)
======================================
어때요? 답이 둘다 똑같이 나오지 않습니까?
(아랫줄 드래그 해보시면 나옵니다)
(답은 51, 4번이 답입니다.)
두 문제 모두 동일한 "미적분1 - 함수의 극한" 개념을 사용하고 있습니다.
교과서 개념의 중요성 뿐만 아니라, 미적분1이 이과에도,
여전히 매우매우매우 중요하다는
이야기를 하고 싶었습니다.
---------------------
지금은 시간이 없는 관계로,
두 문제의 해설과
나머지 하고 싶은 이야기는
오후에 마저 작성하도록 하겠습니다.
-------------------------------------
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
맞팔구 4
-
넌 나를 위한 공주지
-
맛아 0
8천원순대국밥
-
오늘 여사친들이랑 술마시는데 옷 뭘입고가야할까 추천좀.. 1
LOOK 2개인데 한번만 골라줘요.... 키 185/ 몸무게 80 입니다.....
-
칫솔 치약
-
양 응디 0
-
화작하면 1등급은 힘들거같아서 그시간에 사탐 수학 최대한 끌어올리는 전략으로...
-
지금 괜찮아 문장편 듣고있는데 다 듣고 또선생으로 넘어가도 괜찮을까요? 그리고...
-
수능국어1등급 1
예비고2 입니다 2023학년도 수능풀어봤는데(시간은 안잼.. 대충 1시간 반 정도...
-
휴학까지 하면 로딩기간이 말이 안됨..안 그래도 늙었는데
-
성대 자연계열 붙었고 서강대 생명과학과 기다리고 있어요. 공대 갈 생각은 없고...
-
영조 13년(1737)에는 이현필이 영조의 잘못 26가지를 공격했다가 귀양을 가기도...
-
영어만큼은 원툴로 잘하는데...
-
이게 무슨뜻일까여?
-
더블카운팅 30번에 박고 교란순열 29번에 박기 +기하는 공간기하 1개 더
-
롯데월드 11
자이로드롭 왜 운행함?.?
-
집 바로앞에 있는데는 잼민이들 너무 많고 시설도 좀 구려서 가기 싫음... 5분...
-
매월승리 0
매월승리 시즌 1까지는 기출이던데 그냥 마더텅 풀고 시즌 2 부터 하는거 어떰요
-
자꾸 드는데 환불할까 흠.. 언매 공부할 시간에 사탐 등급 하나라도 더 올리는게...
-
사유: 기어를 3단으로 해놓고 운행해서 엔진정지 4번 연속으로 일어남 시뮬레이션이...
-
카톡 운영정책이 너무 싫어서 카톡 탈퇴해버림.. 카톡계정자체가 없음 메세지로도...
-
내 오랜 꿈이다... 어쩌다가 이렇게 됐는지
-
3박4일이라는데 이게 맞나요... 부모님도 이거땜에 싸우던데 하...
-
사라질 직종이 어떤 것일까는 정확히 예측 불가능한거임?
-
복지부 교육부 멍청한놈들 때문에 이게 뭔 혼란이람
-
다이어트중이라 밥 남김 이게 남긴거냐는 말은 ㄴㄴㄴㄴ
-
ㅇㅂㄱ 0
으아아
-
표지의 상징은 희망입니다. ㅎㅎ 실제책 내지는 맛보기와 달리 표지와 비슷한 색으로...
-
얘들아 @@이 야한게임한대~
-
에 대해서 1년전쯤 학부생수준에서 자필로 규명해놓았던 자료를 공유합니다 ㅇㅇ...
-
성대가 조발이 가능한 이유와 다른 학교가 못하는 이유 0
보통 조기발표 하는 학교는 정시에서 특별전형(농어촌, 기회균등, 외국인, 장애인...
-
아가기상 9
우웅
-
세계관 재정립 4
공허참에 의하면 전건이 거짓이면 명제가 참이다 p->q 에서 p가 거짓이면...
-
피램 화작 보는데 글씨가 많이 작긴하네 그냥 뽑아서 풀어야하나
-
자이 고난도나 마더텅 고난도, 이투스 15분 킬러 다 풀어봤는데 좀 쉽더라구요 현재...
-
전 한끼정도만 집에있는거 먹고 다른건 나가서먹거나 배달인듯..
-
지방교대에용 점공률 42즈음이고 작년에 예비 50까진가 돈거같은데
-
두 줄이네요 9
독감이
-
외로움 이런거 말고 학점에서 불리함 등등
-
‘시험 난이도 함부로 예단하기’ 이거같음 내가 그러다가 망했거든..
-
혹시 695.49 점공 몇등인지 봐주실 분 계신가요? 만덕 사례해드려요
-
입결은 연>>>경희지만 사회나가면 어디가 더 유리할까요..? 취업 잘되는건...
-
여캐일러 투척 4
화2 정복 3일차
-
교재 퀄리티가 개지림요. 종이질이 걍 넘사고 360도로 펴지는거 필기할때 개편해요....
-
많이 별로임? 법무사+세무사 둘 다 있으면?
-
어르신 조은 하루 보내세연
-
신성규쌤 유튜브 해설 영상 다 내려간 거 아쉽네.. 0
거기서 진짜 많이 배웠는데 개인적으로 D=0 풀이 <--이게 가장 기억에 남음.
와 저거 암산 안되는 저는... 펜을 집어야하는 ㅜㅜ
아니 뭐... 2009 수능문제야 너무 오래전것이기도 하고,
유명한 문제니까 '암산'이 되는거라고 쓴 거에요ㅜ
이런 고퀄 칼럼에 왜 댓글이 안달리지?