6평 21번, 심층분석 및 다항함수의 전개
21번의 수험생의 가장 상식적인 풀이에 대하여 알아봅시다.
---------------------위는 요약이고 상식적인 풀이를 정리해봅시다.--------------------
처음에는 단순히 인수정리로 f(x)=(x-1)p(x)라 둔 후, 정리하고 또 p(x)=(x-1)q(x)라 둔 후 정리해서 다음까지는 온 학생이 많았을 것입니다. (물론, 핵심이 느껴져서 f(x)=(x-1)^n p(x)라 뒀으면 그 자체로 훌륭한 것이고요.)
이렇게 논리적으로 f(x)를 구했는데 여기서 바로 두번째 극한으로 넘어가지 말고, 식을 직관적으로 이해하려는 시도가 필요합니다. 주어진 식에서 3이 무엇을 의미할까? 생각해보면 인수정리를 여러번 하면서도 느꼈겠지만 f(x)에서 (x-1)이라는 인수가 몇번 들어가 있느냐?가 극한값임을 파악할 수 있습니다. 항상 이렇게 직관적으로 느껴보는 것이 필요함을 명심하도록 하구요. 거의 모든 어려운 문제는 직관과 논리를 오가며 풀이가 진행됩니다.
처음부터 (x-1)^n이 중요하다고 생각한 학생은 훌륭하지만, 그렇지 못한 학생이라도 (x-1)^3을 구한 후에는 직관적으로 느낄려고 노력하는 과정이 필요합니다.
여기까지 왔는데, 함수의 극한값을 구할 때에는 모두 수렴하는 함수로 표현하는 것이 핵심입니다.
앞에 주어진 극한인 의 의미를 파악한 상태에서 이를 이용하기 위해 식을 변형해봅시다.
인데 의 의미를 생각하면, 아래와 같이 극한값이 한정되는 것을 알 수 있습니다.
물론 직관적으로 못느낀 학생이라면 또 g(x)=x p(x), p(x)= x q(x) 등 무한 인수정리를 반복해야합니다. 최소한 f(x)=x^m p(x), g(x)=x^n q(x)라 식을 세웠다면 조금이라도 삘이 온 학생이겠죠.
이므로 이 됩니다.
따라서 f(x)에서는 x의 인수가 1개 존재해야 하므로 f(x)=x(x-1)^3이고 g(x)에서 x의 인수가 3개 존재해야 하므로 g(x)=x^3이다.
-----------------------------------------------------------------
문제 풀이는 여기서 끝입니다.
-----------------------------------------------------------------
포인트를 몇가지 분석해봅시다.
사실 인수정리를 한 번쓰는 문제야 수도 없이 출제가 되었지만 이렇게 1번 2번 3번쓰고 거기에 미분까지 동원해야하는 문제는 이 문제가 유일합니다. 유사한 발상을 한 번도 경험해보지 않은 학생에게는 매우 어려웠을 것인데, 이 발상은 (x-a)^n의 중복도와 매우 깊은 관계가 있는 다음 유명한 극한에서 자주 나오는 발상입니다.
(x-a)^1으로 나온 문제는 많이 봤을것이고, 다음 문제 (x-a)^2 또한 조금만 어려운 문제집을 경험해봤다면 자주 봤을 문항인데요.
위 문제에서 인수정리에 의하여 f(x)=(x-a)g(x)이라 한 후, 대입하고 또 g(x)=(x-a)h(x)라 한 후 대입 그리고
두 식을 미분해서 정리해야 f'(a), f''(a)를 찾을 수 있습니다. 물론 f(x)=ax^n ... 이라 두고 푸는건 자유이긴 하나 일반적으로 증명하기 위해선 인수정리가 온당합니다. 이 식은 실제로 고려대 논술에서도 출제가 되었고 유명한 주제이기도 하니 한번 쯤 경험해두도록 합시다.
한가지 주제를 더 보도록 할텐데, 다음은 교과서에 있는 내용입니다.
교과서의 조립제법 내용인데 위의 내용은 거의 모든 교과서에서 탐구활동이나 문제로 출제가 되고 있습니다.
즉, 위를 보면 모든 다항함수는 f(x)=ax^3+bx^2+cx+d=p(x-1)^3+q(x-1)^2+r(x-1)+s 정도로 얼마든지 정리할 수 있음을 알 수 있고요. 솔직히 공부를 많이한 학생이라면 이정도는 눈에 들어올 것이고, 어려운 문제집에서 접해본 경험도 있을 것입니다. 그런 학생일수록 직관적으로
와 같은 식이 인수 (x-1)^n을 뜻한다는 것이 훨씬 더 잘 와닿을 것입니다. 평소에 많이 경험을 해보고 문제를 풀어보는 것의 중요성이고, 그 과정에서 직관력과 논리력이 모두 늘 것입니다. 위와 같이 발상이 되는 사람은
으로 주어진 식에 대입하면 b=c=d=0과 a=/=0이 매우 쉽게 관찰될 것이고, (x-1)이라는 인수의 중복도가 중요함을 즉각적으로 눈치챌 수 있을 것입니다. 그게 된다면 뒤 극한부터도 일사천리이고요. 여기까지 이해하고, 다음 기출문제를 봅시다.
이 기출문제에서 x->0을 보면 우리 기출을 많이 보고 열심히 풀고 결과까지 외운 학생들은 최저차항의 계수를 뜻한다는 것을 쉽게 알 수 있을 것입니다.
위와 같이 평행이동되어 응용된다 해도, 제대로 기출을 공부한 학생이라면 c=d=0, b=2가 바로 보이는 학생이 되면 좋겠죠. 즉 (x-1)^2을 인수로 갖는 것이고, 그 계수가 2라는 것이죠.
이제 이 글 http://orbi.kr/00012149457 을 다시 보면 왜 발상적인 풀이가 아닌지 느껴질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
배고파여
-
매일 하는 거 맞음ㅋㅋ
-
서성한보다 점공률 낮은 걸 보니 경쟁률은 ㄹㅇ허수지원자일 가능성이 높아보이는데...
-
6,9평 3뜨다 수능날 4뜸뇨 수학 상하 쎈 풀고 수1,2 들어가는게 좋을까여?...
-
새르비한 사람들 다 자는 지금..
-
10분마다 표본이 들어옴.....쓰나미인가
-
그래서 제가 씀요
-
2026 메디컬 끝자락 목표면 미적 사탐이 낫나요? 1
미적사탐 한의대 vs 미적과탐 약대 난이도로 따지면
-
왜 사라짐 자꾸
-
백호 한종철 0
백호 섬개완으로 비유전 듣고 한종철 캐치로직 들을 예정인데 한종철 개치로직 듣고...
-
성균관대 합격생을 위한 노크선배 꿀팁 [성대25][학점에 대해 잘모르겠어요] 1
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
찐따썰 11
초1땐가? 학교에서 뒤에 오는 애 문 잡아줌 걔가 하필 여자애여서 반 전체가...
-
정규커리 타려고하는데 개념완성을 들은 후에 기출분석을 수강하나요 아님 병행하나요?...
-
고려대 수학교육과에서 1. 어떤 학과가 복전하면 후에 취업 시 유리할까요? 2....
-
어떻게 생각하시나요??? (문과 여자) 내년에 다시 대학을 입학하게 된다면 나이로...
-
막 지금 생각하면 얼굴 붉어지고 이불 걷어차고싶은..
-
뭔떡밥이얶는데 1
너동랄려2ㅝ
-
점공.. 0
국숭세 라인 공대인데 이정도면 추합으로라도 붙을확률이 있을까요?? 작년이랑...
-
점수공개는 보통 1
상위권이 하위권보다 많이하나요? 인원 들어올때마다 등수가 계속 밀리는데..
-
아~ 우이 꼬순내 맡고싶다!!!!!!!!!!!!!!!!!!!!!!
-
20명으로 계속 동결이네... 69명 지원에 24명 뽑고 11등인데 이거...
-
저 쌩삼 하려는데 님들 언제부터 시작할거임
-
30퍼밖에 안들어왔는데 나머지 전부 다 내 뒤로 들어와라 제발 ㅠㅠㅜ
-
과외알바를 생각하시는 분들을 위한 매뉴얼&팁입니다. 미리 하나 장만해두세요~~...
-
[단독] 與, 오늘 ‘송민호 방지법’ 발의 예정… 공익요원 전자 출퇴근 시스템 마련 10
국민의힘이 사회복무요원의 출퇴근 복무 관리에 전자 방식을 도입하는 이른바 ‘송민호...
-
아직도 무슨 메타가 돌앗던건지 모르겟다 저격메타엿던거같긴한데
-
고전
-
실제보다 높게 나오나여 낮게 나오나여?
-
매주승리는 0
매주승리 지문이랑 매월승리 지문 겹치넹...
-
395.5면 갈 수 있음?
-
제발요
-
지금 모집인원 -3인 등수인데 점공은 50% 정도 함
-
조기발표 질문 0
정시 조기발표 예체능 정시실기 끝나기전엔 안하죠???
-
오랜만에 일찍 잤더니 못따라가겠네
-
외대송도캠 0
25년8월 예정이라고 카카오맵에 적혀있는데 내년에 이전 예정인과들 이전된다는 말도는거있나요?
-
마샤와 곰 원어판 자막없이 보기 어릴땐 몰랐는데 러시아만화임
-
큰 의미는 없지만..
-
새벽에 뭔일이 잇엇길래
-
김기현 파데 3주차 이제 적분 단원들어감 앞에 급수 조금 씩 가물가물해지기...
-
김종익 개념책 가지고 공부하는데 여기서 따로 개념노트 간단히 만드는 거 어케 생각하시나요
-
요즘 매일 침대에만 잇늨데
-
1학년 자율세특 0
1학년 자율세특에 약물오남용의 실태와 해결방안 등에 대해서 쓰고 2학년 때...
-
뱃지 달렸나요 6
ㅎ
-
덕코 사용법 5
보닌만큼 모아서 자랑하고 다니면 뎀
-
시립뱃 받았다! 4
이제 다른 뱃지도 노려야지
-
ㅋㅋㅋㅋ
-
10시 오픈이네요
-
ㅇㅂㄱ 5
ㅈㄱㄴ
-
몇점이라고 보시나요 댓글 좀
사진이안뜨는것같은데요
혹시 보이면 댓글좀 부탁드려요!
갓갓
이 글 이해원하는분들은 지금이라도 http://atom.ac/books/3853 를 구입하셔서 3회독을 하시면
이런 글을 쓸 수 있습니다
머장님 1, 2 번째사진빼고 싹엑박뜹니다 ㅠㅠ
새벽부터 감사합니다 ㅋㅋ 이제 보이나요?
네네 ! 좋은자료 항상 감사합니다 !
갓갓..
21번 심층분석 ㄷㅅㅂㄱ
머장님 감사합니다!!
어 저도 sinx 나와서 x 곱해서 풀었는데 극한식에서 막 이렇게 곱해도 되나 궁금했는데 시중풀이가 저처럼 푼 풀이가 없었어요... 역시 해원님!!!!
30번 다항함수 풀때는 한완수 도움 많이 받았습니다 감사합니다
잘 푸셨네요 대단하세요 ㅋㅋ
윽 한번 이렇게 냈으니 올해 다시는 킬러로 이런 스타일은 못나오겠구만요
그것보다는 인수정리 등 논리적 계산을 거치면서도 그 식이 가지는 의미를 직관적으로 파악하려고 노력하는 과정. 킬러문제에서 항상 반복되는 직관과 논리를 오가며 풀이가 진행되는 과정 등을 파악하는 것이 공부겠죠ㅎㅎ
리미트가 분모 분자로 배분될때 분자가 0으로 가면 어떻하나.. 하는 생각에 쉽사리 배분을 못했는데 의문점을 한방에 해결해주시는군요. 감사합니다. 한완수도 호기심이 생기네요.
이해원모의고사 언제나와요?
(x-1)^n놓고 꽤 쉽게 풀었는데 끝나고보니 21이 가장 어렵단 말이 많더군요
딱 저렇게 풀어서 거의 6분컷...그리고 29번에서 털렸죠 ㅠ