31. 평면벡터 문제 하나 풀고가세요
e.pdf
올해 출판 될 D&T Core 문제집에 수록된 문제입니다.
답은 첨부파일로 확인해주세요.
풀이에 대한 질문이 있으시면 댓글로 주세요.
오르비 검색창 #제헌 으로 검색하시면
또다른 문제도 풀어 보실 수 있습니다.
허락없이 이 문제들을 짜깁기 해서 과외용/수업용으로 쓰지 말아주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
피카츄 아님. 이런 장르 상상 이상으로 재밌네요 게다가 비극적인게 저랑 코드가 잘 맞는듯
-
나만 1013 나옴...?
-
아직 대학병원 모집 공고 안내려온 것 맞나요..? 사촌 졸업반인데 백수각이라고 한탄하던데
-
후문으로 들어가도 되나요?? 급해여ㅠ
-
고대 경제는 제가 가야함
-
그저 테슬라에 미친 놈..
-
근데 팩트는 나머지 직종도 성한 곳 없다는 것임
-
이대 논술 0
나만 2번에3에 1013 나옴..?
-
미들부터어려움뇨
-
띵곡 2
민경훈 결혼한대..
-
이대 논술 0
답 다 맞고 서술에서 좀 깎여도 합격 가능할까요..?ㅠㅠ
-
지금부턴 똑똑한 애들은 자기 대학 쉽게 가려고 좋은 대학을 까는 개소리를 인기글로...
-
진학사 기준 410.5에 cc면 서울대 공대 어디까지 볼 수 있나요 ㅜㅜ 텔그는...
-
저거에 속아서 반수할 능지면 제발 치대가세요
-
안녕하세요, 메가스터디를 이번에 처음 들으려는 학생입니다. 처음이어서 몇가지 질문...
-
수학재능없으면 3
이미지 n티켓 (2024)수12미적 이미지 하사십(2024) 한석원 4의규칙...
-
수능 성적표 금욜날 볼 수 있는거죠? 그리고 폰으로 볼 수 있었나 0
기억이안나네
-
어두컴컴하면 집중이 잘 안 돼서 평소에도 밝은 환경에서 공부했는데 수능 날 커튼이...
-
하지만 난 고고히 내년도 보겠다..
-
ㅅㅂ 5
드디어 도착 길 헤멜 리 없겠다 럭키비키한걸?
-
어디까지 갈 수 있을까요..?
-
잘생기긴 했어
-
단연코 패드가 아닌가싶음 휴대성도 좋고 책이나 ppt를 패드로 봐야할 때가 되게...
-
결말이없음 이게 일단 이유임
-
AU LY pc 8
왜 파섹만 소문자임 차별 그만!!
-
덜려라 하니 1
ㅈㄱㄴ
-
이대 논술 6
답 나오는것만 복기 1) h(0)=0 h(3)=파이/6 2a+b 2) a-1...
-
현재기준 원서 넣으면 과탑급인 ’중앙대학교 공공인재학부‘
-
포덕은 상당히 움찔하고있다 이말이야.
-
답 7/45 없음? ㅈㅂ;;;;;;;;;;;;;;
-
진짜 답안지 쓰는게 은근 힘듦... 아닌가 나만 그런가
-
수능 한 번 맛 보니까 만만한 시험이 아니구나를 느끼네요 수능 공부할 때 편한 길만...
-
질문은 아래에 있습니다...!! 내년에 수능칠 이과? 현역입니다 인서울 상위권...
-
240×(지구 둘레)/s 정도는 돼야한다!
-
수학 n제 3
수능에서 수학 2정도 받으려면 n제 얼마나 풀어야할까요 사람마다 말하는게 너무...
-
아직 전역도 안 했는데 벌써 마음이 편해짐 ㅇㅇ 여기서 +1을 하더라도 나이만...
-
궁금함뇨
-
볼 때마다 의사 망했다 (본인이 의대 가서) 인생 ㅈ됐다 하시는데 비틱 좀...
-
뭔데 303관까지 무슨 무한의 계단급인데
-
이대 논술 0
저 간호고 마지막 소문제 틀린듯하고;; 나머지는 정말 다맞은듯 한데 추합의 가능성이라도 없을까요
-
끝나고 후기 ㄱㄱ?
-
냥논 공대 1
혹시 0.5 샤프심 두개 있으신분 한번만 빌려줄수있는분 있을까요ㅠㅠㅠ필통 열었는데...
-
한 100배만 더 빨랐으면 좋겠는데.. 얼른 패치좀 해줬으면...
-
12월 지구 노베 시작-> 5,6,7,9,10,수능 1등급 1
오지훈은 신이다 07들아 제발 오지훈 풀커리를 타..!!
-
이건 너네 생각에 없냐? 11년 과정 너무 길자나 좀 줄이자고 어떻게 좀 해봐바
-
수학 풀이과정 반정도만 맞고 이후가 잘못돼서 틀렷는데 이거 틀리면 합격 가능성 거의...
-
짬뽕 하나만 먹기는 좀 헤비해
-
중논 상경 3번 0
확률을 직접 못구하니깐 a에 1,2,3 대입하고 여사건으로 푸는거 맞나요??ㅠㅠ
-
그냥 하지 마
제헌좋아
재미있는 문제 감사합니다
그 솔로깡님임??
ㅇㅇ 그렇슴 ㅎㅇㅎㅇ요
ㅎㅎ
벡터실력 상승된 것 같습니다 감사합니다.
항상 도와주셔서 감사합니다..
진짜 한 4개월간 수학 자체를 손에서 놓고 쉬다가 펜 잡고 푼 첫 문제인데 너무 감동
작년 2탄임..
맙소사.....
언제 출판되나요!!? 두근 기대 두근
ㅎㅎ곧공지 하겠습니다
넵 기다릴께요!! 두근두근!!
내친김에 #제헌 들어가서 다른문제 다 보고 다시 부대 복귀해야겠다
ㄷㄷ
충성충성충성!
어렵네요 ㅠㅠ... 만년3등급 고3 이과생은 짓밟히고갑니다.. 어떻게해야 1등급을 맞을수있을까요 ㅠ..
개념을 잘 떠올리면서 천천히 풀어보세요 쉬운 문제에요 ㅎㅎ
감사합니다~
ㄷ만 약간의 계산이 필요하고 나머지는 의미만 알면 답 나오게... !!
------------------------
깔끔한 문제 감사합니당. ' -' /
개념에 충실하다면 계산량을 거의 제로로 만들어버릴수있는 문항이군요
깔끔한 문제네요 bb
어려운문제 많나여 제헌님
저 문제는 쉬움~중간 정도 난이도에 속합니다.
재수생인데 제가 실력이 오른건지 문제가 쉬운건지 헷갈립니다...난이도가 어떻게돼나요?
난이도는 예상 배치번호 통해서 생각해보세여
사랑합니다
깔끔하군요!
흥미롭네요
감사합니다..!
랍비선생님
문제 좋네요ㅎ
ㄷ 은 접선긋고 피타고라스로...
문과생인데 ㄱ,ㄴ 은 눈으로도 풀리네요
훌륭합니다.
제가 이 문제 관련해서 글 올렸는데 봐주시면 감사드리겠습니다. '제헌'이라고 검색하시면 될 꺼에요
ㄷ.. 노가다 밖에 못떠올렸는데 저럼 더 쉽네여..
한가지 질문이요 점 a 위치가 3,3에 있거나 0,4에 있으면 선분oa는 지름이 아니게 되는데 이럴 경우는 어떻게 해야하고, 위 문제 상황에서 oa가 지름이라는건 어떻게 파악할 수 있나요??
ㄱ에서
수직조건을 통해 세 점 O A B 가 선분 OA를 지름으로 하는 원임을 밝혔죠
ㄷ을 해결하는데에 매우 큰 힌트를 준 셈이고,
만약 A가 각 OBA가 수직이 아닌 경우에 있으면 별 의미없는 문제가 되겠죠 ㅋㅋ
그래서 애초에 문제만들때 각 OBA가 수직이 되도록 설계한것이구요
dnt 코어도 미적 기벡 확통 따로나오나요...?