수학 1문제만 도와주세요! (간절)
공비가 0보다 작아야 한다는 거에 대해 당위성을 부여해주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
11월달이에요 0
다들 화이팅
-
10모기준 높1 3컷 2 50 47 나왔는데 성균관대 끝자락이라도 가능할까.....
-
얼버기 0
-
아 더프 늦을듯 0
늦어도 입장 시켜줌? 8시 10분까진데 20분 넘을거 같은데.... 아오 똥시치..
-
ㄷ
-
국어 풀 때 지문에 표시를 거의 안 해서 그냥 1지문 풀고 바로 마킹하는 식으로...
-
이퀄싫어
-
오늘 아침은 떡 2
(야한말아님)
-
타임어택 지리네 실모가 젤 중요한거같음
-
아틀란티스타고 이쓴ㄴ 건지 택시 타고 있는 건지 구별이 안 감 눈감으면 아틀란티스 맞는 거 같은데
-
13일은 좀 6
;;;
-
왜 시대는 수능 3일전에 월례를보는거지.. 직전에 감 끌어올리면 오히려 좋은건가...
-
하지만 난 대구광역시교육청에서 주관하는 모의고사를 친다 쿠후후
-
??
-
23 24 전부 수능에서 한 7~8점정도 높네 ㄷㄷ
-
오예스로 바꾸니까 녹는다.. 비싼 이유가 있네
-
간쓸개 이감 세트 시즌 5-4 까지 밖에 못했는데 시간이 너무 없네요 ㅠㅠㅠ 남은게...
-
보이루 0
다들보이루 이제 11월이네요 힘냅시다
-
안치면 후회하려나
-
더프 신청했으면 일요일날 롤드컵 보느라 5시간도 못자고 쳤겠네
-
괜시리 좀 쫄리네요 이번수능 = 병무청이랑 맞다이라서 최근 3년간 중에 리스크가...
-
김민주단들 화이팅!
-
☆☆ 대성 19패스 phil0413 추천 부탁드려요 ㅠㅠ 메가커피 1만원권 같이 받아요! 0
추천 아이디 입력하면 메가커피 1만원권 같이 받을 수 있대요 !! 함께 2026...
-
기다려라 E퀄아 형이 찢어줄게
-
어제 ㄹㅇ 힘들었다
-
결국 승리할 자 2
오늘도 파이팅.
-
파운데이션 -> 킥오프-> 뉴분감 이렇게 하려고 하는데 킥오프하고 바로...
-
얼버기 4
-
평범한 고2 학생입니다. 고점은 모의고사 100점, 수능 백분위...
-
몸이 으슬으슬함 이거 아프다는 신호인가 ㅈ됐다
-
헉 여신 이다
-
왜일~까
-
접수 마지막날 새벽까지 누워서 각재다 원서 넣던 게 엊그제 같은데
-
면접 가보자 0
끝장내고 와야겠다
-
고등학교 과정과 비슷한게 많나요
-
이 씨
-
어제 10시 반에 자서 지금 일어남 캬하~.~ 밤 샌 보람이 있다 낮밤 잘바꿨네
-
난시발 잠을 못자겠다 요새
-
chapter 0 (06p~) 본 교재에서 다루는 풀이를 위한 비례식의 원리,...
-
작년에 수학 쌩노베 6등급에서.. 그래도 많이 올렸다 생각했는데 더이상 점수가...
-
구매했습니다! won1024 추천In&추천등록인 서로 메가 커피 1만씩 받아요~~
-
"50점 맞던 애가 90점 맞았다"…발칵 뒤집힌 분당 고등학교, 왜 3
경기 성남시 분당구에 있는 한 고등학교에서 중간고사 시험 문제가 유출됐다는 의혹이...
-
박정무 18럼아 13
10,000fc 다 1-2조 먹던데 왜 난 5천억 주냐? 진짜 시발람아..
-
취객처럼 왔다갔다거리길래 시비걸리는 줄 식겁함
-
며칠간 밤에 괴롭혔던 죗값을 치루게 해줌
어우 문자 울렁증
제발 도와주세요 저 머리 깨져요
또 공부하십니까 goat...
저 제발 도와주세요
일단 머리부터 말리고...
무슨 교재인가여
자 시작합니다
우선 등비수열의 공비가ㅏ 양수일 때와 음수일 때를 구분
자연수 조건이니가..
(확통도 아니고 이런걸..?)
124 125
134 135
145 이 5가지 를 각 case 에서 판단
총 10번..?
양수 일 때 case 구분- 안되니까
공비가 음수 인 걸로 넘어감
-문제 설계 이거에서 되도록 했을 거임
등비수열 공비 양수일 때 그래프랑
음수 일때 그래프를 그려서 시각적으로 편하게 보는 것을 추천드림
자기 전이라 풀이가 좀 부정확하거나 돌아가는 방법일 지도..
그래프 그려봐요
직선과 지수함수의 교점 개수가 3개 안됨
범위를 자연수에서 양수 전체로 확장해볼게요. 등차수열은 직선의 일부이고, 등비수열의 공비가 양수이면 그냥 지수함수죠. (음수이면 이러한 확장이 불가능합니다) 그리고 둘은 어떤 경우에도 두 개 이상의 교점을 가질 수 없습니다. 따라서 등비수열의 공비는 음수여야 합니다. (0인 경우는 자명히 안 됨)
이런 방식으로 푸는 기법을 해석적 확장이라 부릅니다. 정의역의 범위를 기존보다 늘린 후에도 교점의 개수가 2개 이하라면, 정의역의 범위가 더 좁은 원래 두 수열의 교점은 반드시 2개 이하겠죠.
심심하니 문제도 풀어드리겠습니다.
a_n = d(n-1) + a라고 놔보죠.
c1 - 2c2 + c3를 계산하면 d(k1+k3-2k2) = -1입니다. (조건에 의해 d>0)
즉, k1 + k3 < 2k2를 알 수 있습니다.
그러면 가능한 k1, k2, k3의 경우는 딱 세 가지 뿐입니다 : (1, 3, 4), (1, 4, 5), (2, 4, 5)
이제 k1 > 1임을 보이겠습니다.
만약 k1 = 1 이면, b_n의 초항이 양수이므로 a 또한 양수입니다.
댓글을 참고하여 마찬가지로 해석적 확장을 해보면, 이 경우에도 a_n=b_n이 두 개보다 많은 해를 가질 수 없습니다.
따라서 k1=2, k2=4, k3=5이고, 잘 계산해보면 (댓글 참조) a = -11/3. b = 16/3이어서 답은 5번입니다.
저 선생님 너무 감사한데 제가 지금 자야해서 조금 염치 없지만 답변 남겨주시면 내일 정말 꼼꼼히 볼게요!
아니에요^^ 재미있는 문제 가져와 주셔서 감사합니다! 읽어보고 궁금한 거 있으시면 편하게 댓글 달아주세요.
[해석적 확장을 활용한 k1=1 모순 보충설명]
k1 = 1이면 a_n은 언제나 양수인 수열, 즉 양수열입니다.
따라서 a_n=b_n인 n에 대하여 b_n >0이고, n은 항상 홀수여야 합니다.
이제 a_n = d(n-1) + a, b_n = br^(n-1)로 두겠습니다.
그리고 실수 전체를 정의역으로 갖는 함수 a(x) = d(x-1) + a, b(x) = b|r|^(x-1)을 정의하겠습니다.
그럼 모든 홀수 n에 대하여 a_n = a(n), b_n = b(n)이므로, a_n = b_n의 해집합은 a(x) = b(x)의 해집합에 포함됩니다.
그런데 a(x) = b(x)는 최대 두개의 해를 갖습니다. (그래프를 그리든, 엄밀하게 증명하려면 볼록성을 조사하든..)
따라서 k1 = 1일 수 없습니다.
[계산 과정]
d(k1+k3-2k2) = -1 계산하면 d=1.
a_n = b_n 계산하면
(1) a+1 = br
(2) a+3 = br^3
(3) a+4 = br^4
(1)-(2) : 2 = b(r^3-r)
(3)-(2) : 1 = b(r^4-r^3)
둘을 나눠서 소거하고 계산하면 (r이 음수임을 고려할 때) r = -1/2.
차례차례 대입해서 연산하면 a, b 나옵니다!
공비가 양수일때 네모칸에 해당하는 조건을 만족하지 못하는것 같네요, ak2 기준으로 좌우 생각해보시면 감 잡히실듯? 그래서 공비는 양수인게 불가능하므로 공비가 음수라는 방식으로 접근해나가는 귀류법 풀이로 도출하는 것 같아요,